首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
New quaternary intermetallic phases REMGa(3)Ge (1) (RE = Y, Sm, Tb, Gd, Er, Tm; M = Ni, Co) and RE(3)Ni(3)Ga(8)Ge(3) (2) (RE = Sm, Gd) were obtained from exploratory reactions involving rare-earth elements (RE), transition metal (M), Ge, and excess liquid Ga the reactive solvent. The crystal structures were solved with single-crystal X-ray and electron diffraction. The crystals of 1 and 2 are tetragonal. Single-crystal X-ray data: YNiGa(3)Ge, a = 4.1748(10) A, c = 23.710(8) A, V = 413.24(2) A(3), I4/mmm, Z = 4; Gd(3)Ni(3)Ga(8)Ge(3), a = 4.1809(18) A, c = 17.035(11) A, V = 297.8(3) A(3), P4/mmm, Z = 1. Both compounds feature square nets of Ga atoms. The distribution of Ga and Ge atoms in the REMGa(3)Ge was determined with neutron diffraction. The neutron experiments revealed that in 1 the Ge atoms are specifically located at the 4e crystallographic site, while Ga atoms are at 4d and 8g. The crystal structures of these compounds are related and could be derived from the consecutive stacking of disordered [MGa](2) puckered layers, monatomic RE-Ge planes and [MGa(4)Ge(2)] slabs. Complex superstructures with modulations occurring in the ab-plane and believed to be associated with the square nets of Ga atoms were found by electron diffraction. The magnetic measurements show antiferromagnetic ordering of the moments located on the RE atoms at low temperature, and Curie-Weiss behavior at higher temperatures with the values of mu(eff) close to those expected for RE(3+) free ions.  相似文献   

2.
The ternary rare-earth gallium antimonides, REGaSb(2) (RE = La--Nd, Sm), have been synthesized through reaction of the elements. The structures of SmGaSb(2) (orthorhombic, space group D(5)(2)-C222(1), Z = 4, a = 4.3087(5) A, b = 22.093(4) A, c = 4.3319(4) A) and NdGaSb(2) (tetragonal, space group D(19)(4h)-I4(1)/amd, Z = 8, a = 4.3486(3) A, c = 44.579(8) A) have been determined by single-crystal X-ray diffraction. The SmGaSb(2)-type structure is adopted for RE = La and Sm, whereas the NdGaSb(2)-type structure is adopted for RE = Ce--Nd. The layered SmGaSb(2) and NdGaSb(2) structures are stacking variants of each other. In both structures, two-dimensional layers of composition (2)(infinity)[GaSb] are separated from square nets of Sb atoms [Sb] by RE atoms. Alternatively, the structures may be considered as resulting from the insertion of zigzag Ga chains between (2)(infinity)[RE Sb(2)] slabs. In SmGaSb(2), all of the Ga chains are parallel and the (2)(infinity)[SmSb(2)] layers are stacked in a ZrSi(2)-type arrangement. In NdGaSb(2), the Ga chains alternate in direction, resulting in a doubling of the long axis relative to SmGaSb(2), and the (2)(infinity)[NdSb(2)] layers are stacked in a Zr(3)Al(4)Si(5)-type arrangement. Extended Hückel band structure calculations are used to explain the bonding in the [GaSb(2)](3-) substructure.  相似文献   

3.
Stoyko SS  Mar A 《Inorganic chemistry》2011,50(21):11152-11161
Ternary rare-earth zinc arsenides REZn(3)As(3) (RE = La-Nd, Sm) with polymorphic modifications different from the previously known defect CaAl(2)Si(2)-type forms, and the corresponding rare-earth cadmium arsenides RECd(3)As(3) (RE = La-Pr), have been prepared by reaction of the elements at 800 °C. LaZn(3)As(3) adopts a new orthorhombic structure type (Pearson symbol oP28, space group Pnma, Z = 4, a = 12.5935(8) ?, b = 4.1054(3) ?, c = 11.5968(7) ?) in which ZnAs(4) tetrahedra share edges to form ribbons that are fragments of other layered arsenide structures; these ribbons are then interconnected in a three-dimensional framework with large channels aligned parallel to the b direction that are occupied by La(3+) cations. All remaining compounds adopt the hexagonal ScAl(3)C(3)-type structure (Pearson symbol hP14, space group P6(3)/mmc, Z = 2; a = 4.1772(7)-4.1501(2) ?, c = 20.477(3)-20.357(1) ? for REZn(3)As(3) (RE = Ce, Pr, Nd, Sm); a = 4.4190(3)-4.3923(2) ?, c = 21.4407(13)-21.3004(8) ? for RECd(3)As(3) (RE = La-Pr)) in which [M(3)As(3)](3-) layers (M = Zn, Cd), formed by a triple stacking of nets of close-packed As atoms with M atoms occupying tetrahedral and trigonal planar sites, are separated by La(3+) cations. Electrical resistivity measurements and band structure calculations revealed that orthorhombic LaZn(3)As(3) is a narrow band gap semiconductor.  相似文献   

4.
The quaternary intermetallics Ce2CoGa9Ge2, Ce2NiGa9Ge2, and Sm2NiGa9Ge2 were prepared by reacting elemental metals in excess of gallium at 850 degrees C. The title compounds crystallize in the tetragonal space group P4/nmm in the Sm2Ni(Si(1-x)Ni(x))Al4Si6 structure type with cell parameters a = 5.9582(5) A, c = 15.0137(18) A, and a = 5.9082(17) A, c = 14.919(6) A, Z = 2, for Ce2CoGa9Ge2 and Sm2NiGa9Ge2, respectively. The structures are composed of covalently bonded three-dimensional networks of [CoGa9Ge2] in which the rare-earth metals fill the voids forming a 2D square net. The structures of RE2MGa9Ge2 are Ga-rich and possess extensive Ga-Ga bonding even though the Ga atoms do not form a network on their own. Magnetic susceptibility measurements for Ce2CoGa9Ge2 and Ce2NiGa9Ge2 show Curie-Weiss paramagnetism, consistent with presence of Ce(3+) ions. Magnetocrystalline anisotropy was observed for Ce2NiGa9Ge2, with the magnetically easy axis lying along the [001] crystallographic direction. A transition to an antiferromagnetic state was observed below 4 K in the easy direction of magnetization. In the magnetically hard direction of the basal plane, paramagnetic behavior was observed down to 1.8 K.  相似文献   

5.
RESr2RuCu2O8(RE=Gd和Eu)的合成与物性研究   总被引:2,自引:0,他引:2  
报道了磁性超导体RESr2RuCu2O8(RE=Gd和Eu)单相样品的合成以及对其结构和物性的研究。结果表明,这类化合物的结构和YBa2Cu3O7-δ相类似;在这两类化合物中,超导电性与弱铁磁有序共存;两样品铁磁相变温度TM分别为136,130K,超导临界温度TC分别为46,35K;由于Gd^3 和Eu^3 离子磁矩的不同,两样品的磁性质存在一定的差别。  相似文献   

6.
The title compounds were synthesized from RE, REX3, and Ge under an Ar atmosphere at 1200-1370 K. Y2GeI2 and Gd2GeI2 crystallize in space group Rm with lattice constants a = 4.2135(3) and 4.2527(1) A and c = 31.480(2) and 31.657(1) A, respectively. Gd2GeBr2 crystallizes in two modifications, the 1T-type (space group Pm1; a = 4.1668(2) A, c = 9.8173(6) A) and the 3R-type (space group Rm; a = 4.1442(9) A, c = 29.487(7) A). The structural motifs of RE2GeX2 compounds are Ge-centered slightly distorted RE6 octahedra connected via their common edges and extending in the a and b directions. The resulting close-packed double layers are separated by halogen atoms. The electrical resistivity measurements revealed semiconductor behavior for Y2GeI2 and Gd2GeI2 and a metal-semiconductor transition for 1T-Gd2GeBr2. Magnetic susceptibility and heat capacity measurements show long-range magnetic ordering for Gd2GeI2 and 1T-Gd2GeBr2 at approximately 15 and approximately 13 K, respectively.  相似文献   

7.
Six new intermetallic aluminum silicides--Gd(2)PtAl(6)Si(4), Gd(2)AuAl(6)Si(4), Tb(2)PtAl(6)Si(4), Tb(2)AuAl(6)Si(4), Dy(2)PtAl(6)Si(4), and Dy(2)AuAl(6)Si(4)--have been obtained from reactions carried out in aluminum flux. The structure of these compounds was determined by single-crystal X-ray diffraction. They form in space group Rthremacr;m with cell constants of a = 4.1623(3) A and c = 51.048(5) A for the Gd(2)PtAl(6)Si(4) compound. The crystal structure is comprised of hexagonal nets of rare earth atoms alternating with two kinds of layers that have been observed in other multinary aluminide intermetallic compounds (CaAl(2)Si(2) and YNiAl(4)Ge(2)). All six RE(2)MAl(6)Si(4) compounds show antiferromagnetic transitions at low temperatures (T(N) < 20 K); magnetization studies of the Dy compounds show metamagnetic behavior with reorientation of spins at 6000 G. Band structure calculations indicate that the AlSi puckered hexagonal sheets in this structure are electronically distinct from the other surrounding structural motifs.  相似文献   

8.
Two polytypes of potassium rare-earth-metal hexaselenodiphosphates(IV), K(RE)P(2)Se(6) (RE = Y, La, Ce, Pr, Gd), have been synthesized from the stoichiometric reaction of RE, P, Se, and K(2)Se(4) at 750 degrees C. Both single-crystal and powder X-ray diffraction analyses showed that the structures of these polytypes vary with the size of the rare earth metals. For the smaller rare-earth metals, Y and Gd, K(RE)P(2)Se(6) crystallized in the orthorhombic space group P2(1)2(1)2(1). The yttrium compound was studied by single-crystal X-ray diffraction with the cell parameters a = 6.7366(5) ?, b = 7.4286(6) ?, c = 21.603(2) ?, and Z = 4. This structure type comprises a layered, square network of yttrium atoms that are bound to four distinct [P(2)Se(6)](4)(-) units through selenium bonding. Each [P(2)Se(6)](4)(-) unit possesses a Se atom that is not bound to any Y atom but is pointing out into the interlayer spacing, into an environment of potassium cations. For larger rare-earth metals, La, Ce, and Pr, K(RE)P(2)Se(6) crystallized in a second, monoclinic polytype, the structure of which has been published. Both of these two different polytypes can be related to each other and several other isoelectronic chalcophosphate structures based on a Parthé valence electron concentration analysis. These structures include Ag(4)P(2)S(6), K(2)FeP(2)S(6), and the hexagonal M(II)PS(3) structure types. The magnetic susceptibilities of the title compounds have been studied, and the behavior can been explained based on a simple set of unpaired f-electrons. The diffuse reflectance spectroscopy also showed that these yellow plates are moderately wide band gap ( approximately 2.75 eV) semiconductors.  相似文献   

9.
A series of mixed-valent heterometallic pentanuclear Co(III)(3)Co(II)RE(III) (RE = Gd (1), Tb (2), Y (3)) clusters have been rationally assembled by taking advantage of a bifunctional ligand with o-vanillin and tripodal tris(hydroxymethyl)aminomethane units. Structural determinations reveal that all compounds are isomorphous and possess a T-shaped Co(4)RE core, which comprises two nearly linear Co(2)RE subunits sharing a common RE ion. Their magnetic properties were thoroughly studied. The static magnetic susceptibility studies of 1 demonstrate the presence of weak ferromagnetic interactions between the magnetic centres and magnetic anisotropy reflected by the single ion zero-field splitting (ZFS) D term. Both 1 and 2 behave magnetically as heterodinuclear metal systems, while the magnetic behaviour of 3 is identical to an isolated Co(II) ion. Moreover, alternating-current susceptibility measurements did not exhibit any out-of-phase signal, suggesting that slow magnetic relaxation is absent above 2 K within them. These isomorphous Co(4)RE clusters offer an opportunity to systematically probe the contribution of different metal ions to the overall magnetic behaviour in Co(II)-RE(III) systems.  相似文献   

10.
A series of compounds has been discovered while investigating reactions of rare earth, transition metals, and Ge in excess indium. These compounds, RE2Zn3Ge6 (RE = La, Ce, Pr, Nd), are isostructural, crystallizing in the orthorhombic space group Cmcm with lattice parameters a = 5.9691(9) angstroms, b = 24.987(4) angstroms, and c = 5.9575(9) angstroms for La2Zn3Ge6, a = 5.9503(5) angstroms, b = 24.761(2) angstroms, and c = 5.9477(5) angstroms for the Ce analogue, a =5.938(2) angstroms, b = 24.708(8) angstroms, and c = 5.936(2) angstroms for Pr2Zn3Ge6, and a = 5.9094(7) angstroms, b = 24.619(3) angstroms, and c = 5.9063(5) angstroms for the Nd analogue. The structure is composed of PbO-like ZnGe layers and ZnGe4 cage layers and is related to the Ce4Zn8Ge(11-x) structure type. The bonding in the system can be rationalized using the Zintl concept resulting in a material that is expected to be a valence precise semiconductor, although its behavior is more consistent with it being a semimetal, making it an intermediate case. The results of band structure calculations and magnetic measurements of these compounds are discussed.  相似文献   

11.
Guo SP  You TS  Bobev S 《Inorganic chemistry》2012,51(5):3119-3129
Reported are the syntheses, crystal structures, and magnetic susceptibilities of two series of closely related rare-earth metal-lithium germanides RE(2)Li(2)Ge(3) and RE(3)Li(4)Ge(4) (RE = La-Nd, Sm). All title compounds have been synthesized by reactions of the corresponding elements at high temperatures, and their structures have been established by single-crystal X-ray diffraction. RE(2)Li(2)Ge(3) phases crystallize in the orthorhombic space group Cmcm (No. 63) with the Ce(2)Li(2)Ge(3) structure type, while the RE(3)Li(4)Ge(4) phases crystallize in the orthorhombic space group Immm (No. 71) with the Zr(3)Cu(4)Si(4) structure type, respectively. Both of their structures can be recognized as the intergrowths of MgAl(2)Cu- and AlB(2)-like slabs, and these traits of the crystal chemistry are discussed. Temperature-dependent direct-current magnetization measurements indicate Curie-Weiss paramagnetism in the high-temperature regime for RE(2)Li(2)Ge(3) and RE(3)Li(4)Ge(4) (RE = Ce, Pr, Nd), while Sm(2)Li(2)Ge(3) and Sm(3)Li(4)Ge(4) exhibit Van Vleck-type paramagnetism. The data are consistent with the local-moment magnetism expected for RE(3+) ground states. At temperatures below ca. 20 K, magnetic ordering transitions have been observed. The experimental results have been complemented by tight-binding linear muffin-tin orbital electronic-band-structure calculations.  相似文献   

12.
The quaternary compounds RE4Ni2InGe4 (RE = Dy, Ho, Er, and Tm) were obtained as large single crystals in high yields from reactions run in liquid In. The title compounds crystallize in the monoclinic C2/m space group with the Mg(5)Si(6) structure type with lattice parameters a = 15.420(2) A, b = 4.2224(7) A, c = 7.0191(11) A, and beta = 108.589(2) degrees for Dy4Ni2InGe4, a = 15.373(4) A, b = 4.2101(9) A, c = 6.9935(15) A, and beta = 108.600(3) degrees for Ho4Ni2InGe4, a = 15.334(7) A, b = 4.1937(19) A, c = 6.975(3) A, and beta =108.472(7) degrees for Er4Ni2InGe4, and a = 15.253(2) A, b = 4.1747(6) A, c = 6.9460(9) A, and beta = 108.535(2) degrees for Tm4Ni2InGe4. RE4Ni2InGe4 formed in liquid In from a melt that was rich in the rare-earth component. These compounds are polar intermetallic phases with a cationic rare-earth substructure embedded in a transition metal and main group matrix. The rare-earth atoms form a highly condensed network, leading to interatomic distances that are similar to those found in the elemental lanthanides themselves. The Dy and Ho analogues display two maxima in the susceptibility, suggesting antiferromagnetic ordering behavior and an accompanying spin reorientation. The Er analogue shows only one maximum in the susceptibility, and no magnetic ordering was observed for the Tm compound down to 2 K.  相似文献   

13.
Lin H  Li LH  Chen L 《Inorganic chemistry》2012,51(8):4588-4596
Two types of novel ordered chalcogenids Cs[Lu(7)Q(11)] (Q = S, Se) and (ClCs(6))[RE(21)Q(34)] (RE = Dy, Ho; Q = S, Se, Te) were discovered by high-temperature solid state reactions. The structures were characterized by single-crystal X-ray diffraction data. Cs[Lu(7)Q(11)] crystallize in the orthorhombic Cmca (no. 64) with a = 15.228(4)-15.849(7) ?, b = 13.357(3)-13.858(6) ?, c = 18.777(5)-19.509(8) ?, and Z = 8. (ClCs(6))[RE(21)Q(34)] crystallize in the monoclinic C2/m (no. 12) with a = 17.127(2)-18.868(2) ?, b = 19.489(2)-21.578(9) ?, c = 12.988(9)-14.356(2) ?, β = 128.604(2)-128.738(4)°, and Z = 2. Both types of compounds feature 3D RE-Q network structures that embed with dual tricapped cubes Cs(2)@Se(18) in the former or unprecedented matryoshka nesting doll structure cavities of (ClCs(6))@Se(32) in the latter. The band gap, band structure, as well as a structure change trend of the majority of A/RE/Q compounds are presented.  相似文献   

14.
The series of compounds REAu2In4 (RE = La, Ce, Pr, Nd) crystallize from excess In as rod-shaped single crystals. All members adopt the orthorhombic space group Pnma with a = 18.506(2) A, b = 4.6865(6) A, and c = 7.3414(9) A for LaAu2In4, a = 18.514(3) A, b = 4.6624(8) A, and c = 7.389(1) A for CeAu2In4, a = 18.420(4) A, b = 4.6202(9) A, and c = 7.376(2) A for the Pr analogue, and a = 18.406(2) A, b = 4.6114(5) A, and c = 7.4073(7) A for NdAu2In4. The REAu2In4 series can be regarded as polar intermetallic phases composed of a complex [Au2In4]3- polyanion network in which the rare-earth ions are embedded. The [Au2In4]3- network features In tetramer units, which defines the compounds as polyindides. Magnetic measurements found no magnetic ordering down to 2 K for any of the compounds. In addition, LaAu2In4 was found to be Pauli paramagnetic with a small susceptibility. Ab initio density functional methods were used to carry out electronic structure calculations to explore the bonding, the role of gold, and the contributions of different atoms to the density of states near the Fermi energy. We find that the density of states decreases slowly near Ef and reaches a minimum at about 0.5 eV above Ef.  相似文献   

15.
The compounds RE4FeGa(12-x)Ge(x) (RE = Sm, Tb) were discovered in reactions employing molten Ga as a solvent at 850 degrees C. However, the isostructural Y4FeGa(12-x)Ge(x) was prepared from a direct combination reaction. The crystal structure is cubic with space group Imm, Z = 2, and a = 8.657(4) A and 8.5620(9) A for the Sm and Tb analogues, respectively. Structure refinement based on full-matrix least squares on F(o)2 resulted in R1 = 1.47% and wR2 = 4.13% [I > 2(I)] for RE = Sm and R1 = 2.29% and wR2 = 7.12% [I > 2(I)] for RE = Tb. The compounds crystallize in the U4Re7Si6 structure type, where the RE atoms are located on 8c (1/4, 1/4, 1/4) sites and the Fe atoms on 2a (0, 0, 0) sites. The distribution of Ga and Ge in the structure, investigated with single-crystal neutron diffraction on the Tb analogue, revealed that these atoms are disordered over the 12d (1/4, 0, 1/2) and 12e (x, 0, 0) sites. The amount of Ga/Ge occupying the 12d and 12e sites refined to 89(4)/11 and 70(4)/30%, respectively. Transport property measurements indicate that these compounds are metallic conductors. Magnetic susceptibility measurements and M?ssbauer spectroscopy performed on the Tb analogue show a nonmagnetic state for Fe, while the Tb atoms carry a magnetic moment corresponding to a mu(eff) of 9.25 mu(B).  相似文献   

16.
The reactions of RE(IO3)3 [RE = Nd, Sm, Eu] with I2O5 and MoO3 in a 1:2:2 molar ratio at 200 degrees C in aqueous media provide access to RE(MoO2)(IO3)4(OH) [RE = Nd (1), Sm (2), Eu (3)] as pure phases as determined from powder X-ray diffraction data. Single crystal X-ray diffraction experiments demonstrate that these compounds are isostructural and crystallize in the chiral and polar space group P2(1). The structures are composed of three-dimensional networks formed from eight-coordinate, square antiprismatic RE3+ cations and MoO2(OH)+ moieties that are bound by bridging iodate anions. The Mo(VI) centers are present in distorted octahedral environments composed of two cis-oxo atoms, a hydroxo group, and three bridging iodate anions arranged in a fac geometry. There are four crystallographically unique iodate anions in the structures of 1-3, one of these is actually present in the form of a IO3+1 polyhedron where a short interaction of 2.285(4) A is formed between the iodate anion and the hydroxo group bound to the Mo(VI) center. This interaction results in significant distortions of the iodate anion similar to those found in tellurites with TeO3+1 units. Two of the four iodate anions are aligned along the polar b-axis, imparting the required polarity to these compounds. Second-harmonic generation (SHG) measurements on sieved powders of 1 show a response of 350 x alpha-quartz. Crystallographic data: 1, monoclinic, space group P2(1), a = 6.9383(5) A, b = 14.0279(9) A, c = 7.0397(5) A, beta = 114.890(1) degrees, Z = 2; 2, monoclinic, space group P2(1), a = 6.9243(6) A, b = 13.963(1) A, c = 7.0229(6) A, beta = 114.681(1) degrees, Z = 2; 3, monoclinic, space group P2(1), a = 6.9169(6) A, b = 13.943(1) A, c = 7.0170(6) A, beta = 114.542(1) degrees, Z = 2.  相似文献   

17.
Liu Y  Chen L  Li LH  Wu LM  Zelinska OY  Mar A 《Inorganic chemistry》2008,47(24):11930-11941
A new series of isostructural ternary rare-earth zinc antimonides RE(6)Zn(1+x)Sb(14+y) (RE = Pr, Sm, Gd-Ho) has been obtained by direct reaction of the elements at 1050-1100 degrees C. Single-crystal X-ray diffraction studies revealed that these compounds adopt an orthorhombic structure type (space group Immm (no. 71), Z = 2, a = 4.28-4.11 A, b = 15.15-14.73 A, c = 19.13-18.56 A in the progression from RE = Pr to Ho) that may be regarded as stuffed variants of a (U(0.5)Ho(0.5))(3)Sb(7)-type host structure. Columns of face-sharing RE(6) trigonal prisms, centered by Sb atoms, occupy channels defined by an extensive polyanionic Sb network. This network is constructed from three-atom-wide and four-atom-wide Sb strips, the latter being linked together by single Sb atoms in RE(6)Zn(1+x)Sb(14) (RE = Sm, Gd-Ho; y = 0), but also by additional Sb-Sb pairs in a disordered fashion in Pr(6)Zn(1+x)Sb(14+y) (y = approximately 0.6). Interstitial Zn atoms then partially fill tetrahedral sites (occupancy of 0.5-0.7) and, to a lesser extent, square pyramidal sites (occupancy of 0.04-0.12), accounting for the observed nonstoichiometry with variable x. Except for the Gd member, these compounds undergo antiferromagnetic ordering below T(N) < 9 K, with the magnetic susceptibilities of the Tb, Dy, and Ho members following the Curie-Weiss law above T(N). For the Ho member, the thermal conductivities are low and the Seebeck coefficients are small and positive, implying p-type character consistent with the occurrence of partial Zn occupancies. At low temperatures (down to 5 K), electrical resistivity measurements for the Tb, Dy, and Ho members indicated metallic behavior, which persists at high temperatures (up to 560 K) for the Ho member. Band structure calculations on an idealized "Gd(6)Zn(2)Sb(14)" model revealed the existence of a pseudogap near the Fermi level.  相似文献   

18.
High-pressure/high-temperature conditions of 10 GPa and 1150 degrees C were used to synthesize the new rare-earth oxoborates alpha-(RE)(2)B(4)O(9) (RE=Eu, Gd, Tb, Dy) in a Walker-type multianvil apparatus. Single-crystal X-ray structure determination of alpha-(RE)(2)B(4)O(9) (RE=Eu, Gd, Tb) revealed: C2/c, Z=20, alpha-Eu(2)B(4)O(9): a=2547.9(5), b=444.3(1), c=2493.8(5) pm, beta=99.82(3) degrees, R1=0.0277, wR2=0.0693 (all data); alpha-Gd(2)B(4)O(9): a=2539.0(1), b=443.3(1), c=2490.8(1) pm, beta=99.88(1) degrees, R1=0.0457, wR2=0.0643 (all data); alpha-Tb(2)B(4)O(9): a=2529.4(1), b=441.6(1), c=2484.3(1) pm, beta=99.88(1) degrees, R1=0.0474, wR2=0.0543 (all data). The isotypic compounds exhibit a new type of structure that is built up of BO(4) tetrahedra to form a network that incorporates the rare-earth cations. The most important feature is the existence of the new structural motif of edge-sharing BO(4) tetrahedra next to the known motif of corner-sharing BO(4) tetrahedra, which is realized in the presented compounds alpha-(RE)(2)B(4)O(9) (RE=Eu, Gd, Tb, Dy) for the second time. Furthermore, we report the temperature-resolved in-situ powder-diffraction measurements, DTA, IR/Raman spectroscopic investigations, and magnetic properties of the new compounds.  相似文献   

19.
Investigations in the ternary RE-Mn-Bi systems where RE is an early rare earth element have revealed the existence of the polybismuthides RE3MnBi5 (RE = La-Nd), previously known only for the Ce member, and the new compound Sm2Mn3Bi6. Their structures were determined from single-crystal X-ray diffraction data. The RE3MnBi5 compounds adopt the hexagonal inverse Hf5Cu3Sn-type structure (Pearson symbol hP18, space group P63/mcm, a = 9.7139(11)-9.5438(16) A, c = 6.4883(7)-6.4089(11) A for RE = La-Nd), containing chains of face-sharing Mn-centered octahedra. Sm2Mn3Bi6 adopts a new monoclinic structure type (Pearson symbol mP22, space group P21/m, a = 10.3917(8) A, b = 4.4557(3) A, c = 13.2793(10) A, beta = 108.0100(10) degrees ) in which the Mn centers are coordinated by Bi atoms in diverse geometries (distorted octahedral, trigonal bipyramidal, and distorted tetrahedral (seesaw)) and participate in extensive metal-metal bonding in the form of chains of Mn3 clusters. Homoatomic bonding interactions involving nominally anionic Bi atoms are manifested as one-dimensional Bi chains in RE3MnBi5 and as four-atom-wide Bi ribbons in Sm2Mn3Bi6. Electrical resistivity measurements on single crystals revealed metallic behavior with prominent transitions near 40 K for RE3MnBi5 and 50 K for Sm2Mn3Bi6. Magnetic susceptibility measurements showed that Pr3MnBi5 undergoes magnetic ordering near 25 K.  相似文献   

20.
Guo SP  You TS  Jung YH  Bobev S 《Inorganic chemistry》2012,51(12):6821-6829
Eight new rare-earth metal-lithium-germanides belonging to the [REGe(2)](n)[RELi(2)Ge](m) homologous series have been synthesized and structurally characterized by single-crystal X-ray diffraction. The structures of the title compounds can be rationalized as linear intergrowths of imaginary RELi(2)Ge (MgAl(2)Cu structure type) and REGe(2) (AlB(2) structure type) slabs. The compounds with general formula RE(7)Li(8)Ge(10) (RE = La-Nd, Sm), i.e., [REGe(2)](3)[RELi(2)Ge](4), crystallize in the orthorhombic space group Cmmm (No. 65) with a new structure type. Similarly, the compounds with general formula RE(11)Li(12)Ge(16) (RE = Ce-Nd), i.e., [REGe(2)](5)[RELi(2)Ge](6), crystallize in the orthorhombic space group Immm (No. 71) also with its own structure type. Temperature-dependent DC magnetization measurements indicate Curie-Weiss paramagnetism in the high-temperature regime and hint at complex magnetic ordering at low temperatures. The measured effective moments are consistent with RE(3+) ground states in all cases. The experimental results have been complemented by tight-binding linear muffin-tin orbital (TB-LMTO) electronic structure calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号