首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sensitive and specific bioanalytical method for quantitation of a novel antiemetic (ADR-851) in plasma and urine has been developed and validated. The drug and internal standard (metoclopramide) are extracted from the plasma matrix by solid-phase extraction on cyanopropyl bonded-phase columns. After extraction, samples are separated by isocratic reversed-phase high-performance liquid chromatography. The parent drug, internal standard and a yet unidentified metabolite are detected by fluorescence. The method requires 1.0 ml of plasma or 0.1 ml of urine and has a lower limit of quantitation of 2 ng/ml with 10.9% relative standard deviation (R.S.D.). Method linearity has been established over a 2-800 ng/ml range when 1.0 ml of plasma is used. The intra- and inter-day imprecisions for the method are typically better than 6% and 11% R.S.D., respectively, in both plasma and urine over the entire dynamic range. The pooled estimate of bias is less than 5% and attests to the excellent accuracy.  相似文献   

2.
Abstract

A rapid, sensitive, and specific determination of enoxacin and its principal metabolite, oxo-enoxacin, in plasma and urine is described. the method, which employs the structurally related compound ciprof loxac in as internal standard, involves a protein precipitation step for plasma and solid-phase extraction for urine. Liquid chromatographic analysis is carried out on a C-18 bonded silica column; the mobile phase consists of 0.1 M citric-acid/acetonitrile employing ammonium perchlorate and tetrabutyl-ammonium hydroxide as ion-pairing agents. Quantitation is performed by UV-detection at 340 nm.

The analytical method was validated by examining the performance characteristics specificity, linearity, precision, accuracy, sensitivity, and recovery. Enoxacin calibration curves were linear between 0.02 and 3.2 μg/ml of plasma and from 0.5 to 125 μg/ml of urine. Limits of quantitation in plasma and urine were 0.01 and 0.5 μg/ml, respectively. For oxo-enoxacin, linear of calibration curves were obtained i n the range 0.05 to 1.6 μg/ml (plasma) and 1 to 50 μg/ml (urine); the respective quantitation limits were approximately 0.02 and 1 μg/ml.

The present assay procedure has been applied to monitoring plasma and urine concentrations in several pharmacokinetic studies in humans and different animal species.  相似文献   

3.
A method is described for the extraction of a phosphonic acid angiotensin-converting enzyme inhibitor from either urine or plasma, and subsequent quantitation using high-performance liquid chromatographic (HPLC) analysis and post-column o-phthalaldehyde reagent derivatization. The compound cannot be quantitatively extracted from the body fluids, but use of a fluorinated internal standard allowed for the computation of accurate results. With the use of an internal standard, excellent precision, linearity, and recovery were obtained for analyte response in both urine and plasma. In urine a working range of 0.2-10 micrograms/ml was found, with a limit of detection of 0.1 micrograms/ml. For plasma the working range was found to be 2-500 ng/ml, and the limit of detection was established as 1 ng/ml. Due to the non-polar character of the analyte at low pH values, it was possible to use novel extraction (solid-phase C8 column) and HPLC [poly(styrenedivinyl benzene) HPLC column] conditions to separate and quantitate the compound from plasma and urine.  相似文献   

4.
The dioxopiperazine metabolites of quinapril in plasma and urine were extracted with hexane-dichloroethane (1:1) under acidic conditions. Following derivatization with pentafluorobenzyl bromide and purification of the desired reaction products using a column packed with silica gel, the metabolites were analysed separately by capillary column gas chromatography-electron-impact mass spectrometry with selected-ion monitoring. The limits of quantitation for the metabolites were 0.2 ng/ml in plasma and 1 ng/ml in urine. The limits of detection were 0.1 ng/ml in plasma and 0.5 ng/ml in urine, at a single-to-noise ratio of greater than 3 and greater than 5, respectively. The proposed method is applicable to pharmacokinetic studies.  相似文献   

5.
A sensitive, robust and high throughput mass spectrometry based method is described for the determination of buspirone and its active metabolite 1-(2-pyrimidinyl)-piperazine (1-PP) in human plasma. The method uses Oasis MCX solid phase extraction to extract the analytes from plasma. The extracts are analysed by liquid chromatography tandem mass spectrometry using thermally and pneumatically assisted electrospray ionisation and selected reaction monitoring. The method is both accurate and precise with both intra- and inter-assay precision (%CV) of <10% for both buspirone and 1-PP. The method provides a lower limit of quantification of 0.025 ng mL?1 and 0.5 ng mL?1 for buspirone and 1-PP respectively from 0.5 mL of human plasma, sufficient to monitor systemic concentrations of drug and active metabolite at therapeutic doses.  相似文献   

6.
The anticancer drug etoposide is associated with leukemias with MLL gene translocations and other translocations as a treatment complication. The genotype of cytochrome P450 3A4 (CYP3A4), which converts etoposide to its catechol metabolite, influences the risk. In order to perform pharmacokinetic studies aimed at further elucidation of the translocation mechanism, we have developed and validated a liquid chromatography/electrospray/tandem mass spectrometry assay for the simultaneous analysis of etoposide and its catechol metabolite in human plasma. The etoposide analog teniposide was used as the internal standard. Liquid chromatography was performed on a YMC ODS-AQ column. Simultaneous determination of etoposide and its catechol metabolite was achieved using a small volume of plasma, so that the method is suitable for pediatric patients. The limits of detection were 200 ng ml(-1) etoposide and 10 ng ml(-1) catechol metabolite in human plasma and 25 ng ml(-1) etoposide and 2.5 ng ml(-1) catechol metabolite in protein-free plasma, respectively. Acceptable precision and accuracy were obtained for concentrations in the calibration curve ranges 0.2--100 microg ml(-1) etoposide and 10--5000 ng ml(-1) catechol metabolite in human plasma. Acceptable precision and accuracy for protein-free human plasma in the range 25--15 000 ng ml(-1) etoposide and 2.5--1500 ng ml(-1) etoposide catechol were also achieved. This method was selective and sensitive enough for the simultaneous quantitation of etoposide and its catechol as a total and protein-free fraction in small plasma volumes from pediatric cancer patients receiving etoposide chemotherapy. A pharmacokinetic model has been developed for future studies in large populations.  相似文献   

7.
A sensitive method for the simultaneous high-performance liquid chromatographic determination of clarithromycin and its active metabolite in plasma and urine is described. Alkalinized samples were coextracted with an internal standard and analyzed on a C8 column using electrochemical detection. Recoveries were greater than or equal to 85% and consistent. Standard curves for plasma were linear in the range 0-2 micrograms/ml for both compounds (r greater than 0.99), with limits of quantification of approximately 10.03 micrograms/ml (0.5-ml sample). Within-day and day-to-day precision were good, with coefficients of variation mostly within +/- 5%; accuracy for both compounds were routinely within 90-110% of theoretical values. Standard curves for urine were linear in the range 0-100 micrograms/ml with limits of quantification of 0.5 micrograms/ml (0.2-ml sample). Urine assays also had similar within-day and day-to-day precisions and accuracy.  相似文献   

8.
A new liquid chromatographic/mass spectrometric assay has been developed for the determination of DX-8951, a new anti-tumor drug, and its 4-hydroxymethyl metabolite (UM-1) in human plasma and urine. Solid-phase extractions were used for sample preparation. A gradient reverse-phase HPLC separation was developed with mobile phases consisting of trifluoroacetic acid and methanol. The detection was conducted using atmospheric pressure chemical ionization tandem mass spectrometry in the selected reaction monitoring mode. A structural analog, camptothecin (CPT), was used as the internal standard. The assay was validated for the determination of DX-8951 and UM-1 in human plasma and urine. The lower limits of quantitation of DX-8951 and UM-1 were 0.1 ng/mL in plasma and 1 ng/mL in urine. The method showed a satisfactory sensitivity, precision, accuracy, recovery and selectivity.  相似文献   

9.
Sensitive and selective methods have been developed for quantitation of the novel anticonvulsant remacemide in rat and dog plasma and urine. The methods employed liquid-liquid extraction (urine) or ion-exchange solid-phase extraction (plasma), with an internal standard, followed by high-performance liquid chromatography with ultraviolet detection. The detection limit for both methods was 10 ng/ml. Overall accuracy was 0.00% for plasma and -1.4% for urine with a precision of 6.04 and 3.87% for plasma and urine, respectively. The standard curves were linear for both plasma and urine over a wide concentration range (9.96-2490 ng/ml). The plasma method was also applied to measurement of in vitro plasma protein binding of remacemide in rat, dog and human plasma.  相似文献   

10.
A sensitive gas chromatographic-electron-capture detection method for the simultaneous determination of the antianginal drug nitroglycerin (GTN) and its dinitrate metabolites (1,2-GDN and 1,3-GDN) was developed. Human plasma samples (1 ml) spiked with 2,6-dinitrotoluene as the internal standard were extracted once with 10 ml of a methylene chloride-pentane mixture (3:7, v/v). Using this solvent system, less contaminants are extracted into the organic phase from plasma, resulting in cleaner chromatograms and prolonged column life. A break point was observed on the standard curves of GTN and GDNs. The two linear regions for the detectable concentrations of GTN are 0.025-0.3 and 0.3-3 ng/ml and for 1,2-GDN and 1,3-GDN they are 0.1-1 and 1-10 ng/ml. The limits of detection by this method for GTN, 1,2-GDN and 1,3-GDN in plasma are 0.025, 0.1 and 0.1 ng/ml, respectively.  相似文献   

11.
A high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of both remacemide (a novel anticonvulsant and cerebroprotectant) and an active, major metabolite in human plasma. After the addition of an internal standard, the analytes were extracted from the plasma by ion-exchange solid-phase extraction and measured by an isocratic HPLC system with ultraviolet detection at 210 nm. The recovery of the analytes was > 90%. The standard curves were linear over the range of quantitation of approximately 10-500 ng/ml for remacemide itself and 15-250 ng/ml for the metabolite. Both intra-day and inter-day accuracy and precision data were excellent. Remacemide and its metabolite were shown to be stable in human plasma for at least a year when stored at -20 degrees C.  相似文献   

12.
A sensitive and rapid method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) combined with rapid solid-phase extraction (SPE) has been developed and validated for the quantitative determination of enalapril and its active metabolite enalaprilat in human plasma. After addition of internal standard to human plasma, samples were extracted by 96-well SPE cartridge. The extracts were analyzed by HPLC with the detection of the analyte in the multiple reaction monitoring (MRM) mode. This method for the simultaneous determination of enalapril and enalaprilat was accurate and reproducible, with respective limits of quantitation of 0.2 and 1.0 ng/mL in plasma. The standard calibration curves for both enalapril and enalaprilat were linear (r(2) = 0.9978 and 0.9998) over the concentration ranges 0.2-200 and 1.0-100 ng/mL in human plasma, respectively. The intra- and inter-day precision over the concentration range for enalapril and enalaprilat were lower than 13.3 and 15.4% (relative standard deviation, %RSD), and accuracy was between 89.2-105.0 and 91.9-104.7%, respectively.  相似文献   

13.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed for the determination of amdinocillin (formerly mecillinam) in human plasma and urine. The assay is performed by direct injection of a plasma protein-free supernatant or a dilution of urine. A 10 micrometer muBondapak phenyl column with an eluting solvent of water--methanol--1 M phosphate buffer, pH 7 (70:30:0.5) was used, with UV detection of the effluent at 220 nm. Azidocillin potassium salt [potassium-6-(D-(-)-alpha-azidophenyacetamido)-penicillanate] was used as the internal standard and quantitation was based on peak height ratio of amdinocillin to that of the internal standard. The assay has a recovery of 74.4 +/- 6.3% (S.D.) in the concentration ranges of 0.1-20 microgram per 0.2 ml of plasma with a limit of detection equivalent to 0.5 microgram/ml plasma. The urine assay was validated over a concentration range of 0.025-5 mg/ml of urine, and has a limit of detection of 0.025 mg/ml (25 microgram/ml) using a 0.1-ml urine specimen per assay. The assay was applied to the determination of plasma and urine concentrations of amdinocillin following intravenous administration of a 10 mg/kg dose of amdinocillin to two human subjects. The HPLC and microbiological assays were shown to correlate well for these samples.  相似文献   

14.
A high-performance liquid chromatographic assay has been developed and validated for the determination of centbutindole and its hydroxy metabolite in serum. The method involves extraction of serum samples with diethyl ether at pH greater than 8, back-extraction into 0.5 M hydrochloric acid and finally again with diethyl ether after addition of 2 M potassium hydroxide. Separation was accomplished by reversed-phase high-performance liquid chromatography on a cyano column with an acetonitrile-phosphate buffer system. The recovery of centbutindole and its metabolite was always greater than 80%. Calibration curves were linear over the concentration range 0.25-5 ng/ml for centbutindole and 0.05-1 ng/ml for the hydroxy metabolite. Although the lower limit of detection was 0.1 ng/ml for centbuntindole and 0.02 ng/ml for the hydroxy metabolite, the reliable limits of quantitation were 0.25 and 0.05 ng/ml, respectively, using 4 ml of serum.  相似文献   

15.
A rapid, specific, and sensitive method for the simultaneous quantitation of organophosphates (fenitrothion (MEP), malathion, and phenthoate (PAP)), glufosinate (GLUF), and glyphosate (GLYP) in human serum and urine by gas chromatography-mass spectrometry (GC-MS) has been validated. All of the targeted compounds together with the internal standard were extracted from the serum and urine using a mix-mode TiO-C(18) monolithic spin column. The recovery of organophosphates from serum and urine ranged from 12.7 to 49.5%. The recovery of GLUF and GLYP from serum and urine ranged from 1.9 to 7.9%. The intra- and inter-accuracy and precision (expressed as relative standard deviation, %RSD) were within 96.7-107.7% and 4.0-13.8%, respectively. The detection and quantitation limits for serum and urine were 0.1 and 0.1 μg/ml, respectively, for organophosphates, 0.1 and 0.5 μg/ml, respectively for GLUF and GLYP. The method had linear calibration curves ranging from 0.1 to 25.0 μg/ml for organophosphates and 0.5-100.0 μg/ml for GLUF, and GLYP. The validated method was successfully applied to a clinical GLYP poisoning case.  相似文献   

16.
A simple, selective and sensitive procedure is described for the quantitation of flupirtine maleate (FLU) and its active acetylated metabolite (Met. 1) in plasma and urine. Using a 0.5-ml sample, a sensitivity of 10 ng/ml is easily achieved with a reversed-phase octadecylsilane (C18) column, and a high-performance liquid chromatographic system with fluorescence detection. Quantitation from plasma involves addition of an internal standard, protein precipitation with acetonitrile and a sample concentrating step, while for urinalysis the samples are taken through a single extraction with methylene chloride. Analytical recoveries of FLU and Met. 1 from plasma averaged greater than or equal to 95%, while from urine only 60 and 50%, respectively, could be recovered. The overall, inter- and intra-day variability for both FLU and Met. 1 averaged 6, 5 and 3%, in plasma, respectively. Standard calibration plots in plasma were linear (r greater than or equal to 0.99) for FLU (range: 0.01-10.0 micrograms/ml) and Met. 1 (range: 0.5-25 micrograms/ml) over the extended range. A slightly modified elution system was employed for quantitation of FLU and Met. 1 in urine.  相似文献   

17.
A highly sensitive thermospray liquid chromatographic-mass spectrometric method has been developed for the simultaneous determination of FRC-8653 (I), a new calcium antagonist, and its main metabolite (M-4) in plasma. A deuterated analogue of I was added to the plasma as the internal standard. After the purification and concentration of the plasma sample on bonded-phase disposable columns, the extract was injected into the thermospray liquid chromatograph and analysed by selected-ion monitoring mass spectrometry. The calibration curves obtained were linear over the concentration range 0.5-100 ng/ml. The limits of quantification are 0.5 ng/ml for I and 1 ng/ml for M-4 in plasma, which are sufficient to evaluate plasma concentrations after oral administration to rats.  相似文献   

18.
A high-performance liquid chromatographic method is described for monitoring plasma concentrations of cinromide (3-bromo-N-ethylcinnamamide) and its de-ethylated metabolite. Carbamazepine levels can be easily measured by the same technique. The N-isopropyl analogue of cinromide is used as internal standard, and all compounds are easily separated on a reversed-phase column operated at 55 degrees with a small-diameter pre-column maintained at the same temperature. The extraction is rapid and generally applicable to plasma and urine samples that are to be analyzed by reversed-phase chromatography. Short- and long-term reproducibility studies show less than 4% relative standard deviation for replicate determinations for all drugs. Limits of quantitation are 10-20 ng/ml with an internal standard concentration of 3 micrograms/ml. Another metabolite of cinromide, 3-bromocinnamic acid, which may have some anticonvulsant effect, can be analyzed simultaneously by buffering the mobile phase and adding an ion-pairing reagent.  相似文献   

19.
A method has been developed for the simultaneous determination of Tranilast, N-(3',4'-dimethoxycinnamoyl)anthranilic acid (N-5'), and metabolites in plasma and urine from humans, dogs and rodents administered N-5'. Total N-5' and metabolite N-3 conjugates were determined in human urine. Detection limits in plasma were 0.2 micrograms/ml for metabolite N-3-S and N-5' and 0.1 micrograms/ml for metabolites N-3 and N-4. In urine, detection limits were 2 micrograms/ml for metabolite N-3-S and N-5' and 1 micrograms/ml for metabolites N-3 and N-4. Metabolite N-4 was not identified in any sample assayed.  相似文献   

20.
A rapid and sensitive method for the simultaneous confirmatory analysis of three forensic most relevant cannabinoids, Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH), by means of high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) in human plasma was developed and fully validated. Sample clean-up was performed by automated silica-based solid-phase extraction and the separation was carried out using a PhenylHexyl column (50 x 2 mm i.d., 3 micro m) and acetonitrile-5 mM ammonium acetate gradient elution. Data were acquired with an API 3000 LC/MS/MS system equipped with a turboionspray interface and triple quadrupole mass analyzer using positive electrospray ionization and multiple reaction monitoring. Two MS/MS transitions for each substance were monitored and deuterated analogues of analytes were used as internal standards for quantitation. The limit of quantitation was 0.8 ng ml(-1) for THC, 0.8 ng ml(-1) for 11-OH-THC and 4.3 ng ml(-1) for THC-COOH and linearity with a correlation coefficient r(2) = 0.999 was achieved up to 100 ng ml(-1) for THC and 11-OH-THC and 500 ng ml(-1) for THC-COOH. The limits of detection were 0.2 ng ml(-1) for THC, 0.2 ng ml(-1) for 11-OH-THC and 1.6 ng ml(-1) for THC-COOH. The developed LC/MS/MS method was also successfully used for the determination of THC-COOH-glucuronide, the phase II metabolite of THC-COOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号