首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the ability of different cluster definitions to serve as a good reaction coordinate in molecular simulations of nucleation. In particular, the most commonly used Stillinger criterion [J. Chem. Phys. 38, 1486 (1963)] is compared with the cluster definition introduced by ten Wolde and Frenkel [J. Chem. Phys. 109, 9901 (1998)]. The accuracy of these two different cluster definitions is tested by using molecular dynamics to study the vapor-liquid nucleation of Lennard-Jones argon as a model system. We are able to compare the size of the critical cluster identified by each cluster definition with a completely model-independent value provided by the nucleation theorem, aided by a recently introduced method that accurately extracts the location of the transition state directly from the kinetics. It is found that the Stillinger definition strongly overestimates the size of small molecular clusters by up to a factor of 2. A simple change of the Stillinger radius is unable to rectify this deficiency. On the contrary, the ten Wolde-Frenkel definition, while being only slightly more elaborate than a simple Stillinger criterion, is remarkably successful in identifying the correct molecular excess of the small clusters if the parameters are chosen adequately. The method described here can also be generalized to identify a proper reaction coordinate in other activated processes.  相似文献   

2.
The adsorption isotherm was determined for phenol in methanol/water on a C-8 stationary phase using frontal analysis in staircase mode, assuming different total column porosities, from 1 to 87%. Each set of adsorption isotherm data, with a certain column porosity, was fitted to various adsorption models and the generated parameters were used to calculate overloaded elution band profiles that were compared with experiments. It was found that the bi-Langmuir model had an optimum fit for a porosity that corresponds well with the value found experimentally. The adsorption energy distribution (AED) calculations and error analysis confirmed a bimodal energy distribution. It was also found that band profiles can be accurately predicted with a quite arbitrary chosen porosity, under prerequisite that a wrong but flexible adsorption model is chosen instead of the correct one. The latter result is very useful for quick optimizations of preparative separations where the exact value of the column porosity is not available.  相似文献   

3.
4.
《Fluid Phase Equilibria》2004,216(1):175-182
An automated apparatus developed for the determination of liquid–liquid and solid–liquid equilibrium temperatures with a resolution of 1 mK and a traceable accuracy of 0.01 K is described. The amount of light transmitted through six sample cells placed in a computer controlled thermostat is recorded at heating or cooling rates from 0.075 to 15 K h−1. The construction does not require expensive optic equipment like lasers, glass fibre optics or photomultipliers, but is based on light emitting diodes (LED) as light sources and light dependent resistors (LDR) or photodiodes as detectors. As shown by the discussed examples, the instrument has a wide range of possible applications from the investigation of simple one-component and binary systems to the study of the complicated phase behavior of surfactant solutions.  相似文献   

5.
The bacterial RecA protein has been a model system for understanding how a protein can catalyze homologous genetic recombination. RecA-like proteins have now been characterized from many organisms, from bacteriophage to humans. Some of the RecA-like proteins, including human RAD51, appear to function as helical filaments formed on DNA. However, we currently have high resolution structures of inactive forms of the protein, and low resolution structures of the active complexes formed by RecA-like proteins on DNA in the presence of ATP or ATP analogs. Within a crystal of the E. coli RecA protein, a helical polymer exists, and it has been widely assumed that this polymer is quite similar to the active helical filament formed on DNA. Recent developments have suggested that this may not be the case.  相似文献   

6.
Acrylonitrile is a key industrial compound with numerous uses. Despite its importance, its enthalpy of formation is still contentious. There is a 12 kJ mol−1 range of values reported for the gas phase quantity: 173–185 kJ mol−1. Quantum chemical calculations, using current methodologies and defining reactions, suggest values between 185 and 191 kJ mol−1: the recommended value, an average, is 188 ± 7 kJ mol−1.  相似文献   

7.
A novel microextraction method is introduced based on dispersive liquid–liquid microextraction (DLLME) in which an in situ metathesis reaction forms a water-immiscible ionic liquid (IL) that preconcentrates aromatic compounds from water followed by separation using high-performance liquid chromatography. The simultaneous extraction and metathesis reaction forming the IL-based extraction phase greatly decreases the extraction time as well as provides higher enrichment factors compared to traditional IL DLLME and direct immersion single-drop microextraction methods. The effects of various experimental parameters including type of extraction solvent, extraction and centrifugation times, volume of the sample solution, extraction IL and exchanging reagent, and addition of organic solvent and salt were investigated and optimized for the extraction of 13 aromatic compounds. The limits of detection for seven polycyclic aromatic hydrocarbons varied from 0.02 to 0.3 μg L−1. The method reproducibility produced relative standard deviation values ranging from 3.7% to 6.9%. Four real water samples including tap water, well water, creek water, and river water were analyzed and yielded recoveries ranging from 84% to 115%.   相似文献   

8.
The mole is a difficult concept. Surveys have shown that even many teachers do not have a proper understanding of it. To help to meet this problem, the SI/IUPAC formulation of the mole is carefully presented and explained. New SI proposals are also briefly discussed.  相似文献   

9.
The determination of the pH of a plutonium solution has traditionally depended on an electrode or a titration in the presence of a complexing agent. A new approach uses the equilibrium distribution of the Pu oxidation states to estimate the hydrogen ion concentration. The method is used to estimate the equilibrium constant of the first hydrolysis reaction of tetravalent plutonium.  相似文献   

10.
Classical Frankel's law describes the formation of soap films and their evolution upon pulling, a model situation of film dynamics in foams (formation, rheology, and destabilization). With the purpose of relating film pulling to foam dynamics, we have built a new setup able to give an instantaneous measurement of film thickness, thus allowing us to determine film thickness profile during pulling. We found that only the lower part of the film is of uniform thickness and follows Frankel's law, provided the entrainment velocity is small. We show that this is due to confinement effects: there is not enough surfactant in the bulk to fully cover the newly created surfaces which results in immobile film surfaces. At large velocities, surfaces become mobile and then Frankel's law breaks down, leading to a faster drainage and thus to a nonstationary thickness at the bottom of the film. These findings should help in understanding the large dispersion of previous experimental data reported during the last 40 years and clarifying the pulling phenomenon of thin liquid films.  相似文献   

11.
Helix formation is an elementary process in protein folding, influencing both the rate and mechanism of the global folding reaction. Yet, because helix formation is less cooperative than protein folding, the kinetics are often multiexponential, and the observed relaxation times are not straightforwardly related to the microscopic rates for helix nucleation and elongation. Recent ultrafast spectroscopic measurements on the peptide Ac-WAAAH(+)-NH(2) were best fit by two relaxation modes on the ~0.1-1 ns time scale, (1) apparently much faster than had previously been experimentally inferred for helix nucleation. Here, we use replica-exchange molecular dynamics simulations with an optimized all-atom protein force field (Amber ff03w) and an accurate water model (TIP4P/2005) to study the kinetics of helix formation in this peptide. We calculate temperature-dependent microscopic rate coefficients from the simulations by treating the dynamics between helical states as a Markov process using a recently developed formalism. The fluorescence relaxation curves obtained from simulated temperature jumps are in excellent agreement with the experimentally determined results. We find that the kinetics are multiphasic but can be approximated well by a double-exponential function. The major processes contributing to the relaxation are the shrinking of helical states at the C-terminal end and a faster re-equilibration among coil states. Despite the fast observed relaxation, the helix nucleation time is estimated from our model to be 20-70 ns at 300 K, with a dependence on temperature well described by Arrhenius kinetics.  相似文献   

12.
Rules for prediction of the phase structure in immiscible polymer blends from the knowledge of their composition, component properties and the flow field in a mixing or processing device are discussed. The reliability of qualitative prediction of the dependence of phase structure on system parameters is used as a criterion of plausibility of the rules. No general reliable rule for prediction of the phase structure type (continuity of phases) is available in the literature. Dependence of the droplet break‐up frequency on its size, contribution of simultaneous collisions of three or more droplets to coalescence and the effect of complex flow field on coalescence must be better described for a reliable qualitative prediction of the dependence of the droplet size on the system parameters.  相似文献   

13.
1 Introduction Liquid crystals (LC) are a state of order between crystals and liquids. They have imperfect long range orders of orientation and position. Thus, they can be fluid like a liquid and they can have anisotropic prop-erties like crystals. For th…  相似文献   

14.
The biologically active alkaloid muscimol is present in fly agaric mushroom (Amanita muscaria), and its structure and action is related to human neurotransmitter γ-aminobutyric acid (GABA). The current study reports on determination of muscimol form present in water solution using multinuclear 1H and 13C nuclear magnetic resonance (NMR) experiments supported by density functional theory molecular modeling. The structures of three forms of free muscimol molecule both in the gas phase and in the presence of water solvent, modeled by polarized continuous model, and nuclear magnetic isotropic shieldings, the corresponding chemical shifts, and indirect spin–spin coupling constants were calculated. Several J-couplings observed in proton and carbon NMR spectra, not available before, are reported. The obtained experimental spectra, supported by theoretical calculations, favor the zwitterion form of muscimol in water. This structure differs from NH isomer, previously determined in dimethyl sulfoxide (DMSO) solution. In addition, positions of signals C3 and C5 are reversed in both solvents.  相似文献   

15.
The present work describes a method to develop a simulation model for dearomatisation of the straight-run fraction that boils in the range 140–240°C (also called Aviation Turbine Fuel fraction) of Bombay high crude (India—offshore). Sulpholane was used as a solvent to extract aromatics from this fraction. A mass spectrometric analysis of the ATF fraction identified six hydrocarbon types; each of these was represented by one or more components. The group contribution model, UNIFAC, has been investigated for the prediction of the multicomponent liquid—liquid equilibria. The compositions of the extract and raffinate phases, thus predicted, compare closely with single stage experimental data. Multistage countercurrent extraction calculations have also been carried out using the above model and checked satisfactorily against experimental data that were available on a 27 mm-diameter packed laboratory extraction column. It has been shown that the representation of ATF fraction by model hydrocarbons, together with the equilibria predictions by UNIFAC, form a sufficiently accurate data base for the simulation model.  相似文献   

16.
The surface charge of semiconductor nanoparticles, Q, is an important parameter which determines their electrokinetic behavior, stability in water and polar solvents, functions of optical and electronic devices, self-assembly properties, and interactions with cell membranes. We have developed a simple method for quantitative determination of Q in their native aqueous environment. The method does not require the knowledge of exact atomic structure or make assumptions about effects of drying on charge distribution. The method is based on titration of nanoparticle dispersion with a solution of oppositely charged polyelectrolyte. The point of complete neutralization is recognized as an inflection point on the dependence of fluorescence intensity on the amount of polyelectrolyte added. Thioglycolic acid-stabilized CdTe nanoparticles 2 nm in diameter were found to carry an average Q from -2.6 to -5.5 for pH 7.5 to 10, respectively. This charge is found to be smaller than that calculated theoretically for an analogous structure (i.e., Q = -8), presumably due to adsorption of Cd(2+) ions on the stabilizer shell and on Te atoms with unsaturated valence located on the side planes of CdTe tetrahedrons.  相似文献   

17.
A new method for estimating the numerical value of the first hydrolysis constant of tetravalent plutonium is illustrated by examples. It uses the pH and the equilibrium fractions of two of the Pu oxidation states. They are substituted into one or more of a choice of formulas that render explicit estimates of the hydrolysis constant.  相似文献   

18.
The adsorption isotherms of phenol, caffeine, insulin, and lysozyme were measured on two C(18)-bonded silica columns. The first one was packed with classical totally porous particles (3 microm Luna(2)-C(18)from Phenomenex, Torrance, CA, USA), the second one with shell particles (2.7 microm Halo-C(18) from Advanced Materials Technology, Wilmington, DE, USA). The measurements were made at room temperature (T=295+/-1K), using mainly frontal analysis (FA) and also elution by characteristic points (FACP) when necessary. The adsorption energy distributions (AEDs) were estimated by the iterative numerical expectation-maximization (EM) procedure and served to justify the choice of the best adsorption isotherm model for each compound. The best isotherm parameters were derived from either the best fit of the experimental data to a multi-Langmuir isotherm model (MLRA) or from the AED results (equilibrium constants and saturation capacities), when the convergence of the EM program was achieved. The experiments show than the loading capacity of the Luna column is more than twice that of the Halo column for low-molecular-weight compounds. This result was expected; it is in good agreement with the values of the accessible surface area of these two materials, which were calculated from the pore size volume distributions. The pore size volume distributions are validated by the excellent agreement between the calculated and measured exclusion volumes of polystyrene standards by inverse size exclusion chromatography (ISEC). In contrast, the loading capacity ratio of the two columns is 1.5 or less with insulin and lysozyme. This is due to a significant exclusion of these two proteins from the internal pore volumes of the two packing materials. This result raises the problem of the determination of the effective surface area of the packing material, particularly in the case of proteins. This area is about 40 and 30% of the total surface area for insulin and for lysozyme, respectively, based on the pore size volume distribution validated by the ISEC method. The ISEC experiments showed that the largest and the smallest mesopores have rather a cylindrical and a spherical shape, respectively, for both packing materials.  相似文献   

19.
20.
Density function theory calculations reveal that the Grubbs-Hoveyda olefin metathesis pre-catalyst is activated by the formation of a complex in which the incoming alkene substrate and outgoing alkoxy ligand are both clearly associated with the ruthenium centre. The computed energies for reaction are in good agreement with the experimental values, reported here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号