首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钟小丽  谢菠荪 《声学学报》2013,38(4):477-485
基于空间球谐函数展开,提出了一种空间方向连续的个性化双耳时间差(ITD)模型,并导出了ITD测量的空间采样理论。52名受试者的计算结果表明,本文模型所包含的前六阶球谐展开项可充分表征ITD的空间变化特性,包括左右对称和前后不对称。利用39个空间方向的ITD测量值可准确重构空间方向连续的个性化ITD函数,而利用头部和耳部的四个生理参数的测量值,也可近似预测空间方向连续的个性化ITD函数。本文模型的结构和精度均优于现有的同类模型,可应用于个性化ITD的简化测量以及生理参数定制。   相似文献   

2.
For human listeners, cues for vertical-plane localization are provided by direction-dependent pinna filtering. This study quantified listeners' weighting of the spectral cues from each ear as a function of stimulus lateral angle, interaural time difference (ITD), and interaural level difference (ILD). Subjects indicated the apparent position of headphone-presented noise bursts synthesized in virtual auditory space. The synthesis filters for the two ears either corresponded to the same location or to two different locations separated vertically by 20 deg. Weighting of each ear's spectral information was determined by a multiple regression between the elevations to which each ear's spectrum corresponded and the vertical component of listeners' responses. The apparent horizontal source location was controlled either by choosing synthesis filters corresponding to locations on or 30 deg left or right of the median plane or by attenuating or delaying the signal at one ear. For broadband stimuli, spectral weighting and apparent lateral angle were determined primarily by ITD. Only for high-pass stimuli were weighting and lateral angle determined primarily by ILD. The results suggest that the weighting of monaural spectral cues and the perceived lateral angle of a sound source depend similarly on ITD, ILD, and stimulus spectral range.  相似文献   

3.
The synthesis of individual virtual auditory space (VAS) is an important and challenging task in virtual reality. One of the key factors for individual VAS is to obtain a set of individual head related transfer functions (HRTFs). A customization method based on back-propagation (BP) artificial neural network (ANN) is proposed to obtain an individual HRTF without complex measurement. The inputs of the neural network are the anthropometric parameters chosen by correlation analysis and the outputs are the characteristic parameters of HRTFs together with the interaural time difference (ITD). Objective simulation experiments and subjective sound localization experiments are implemented to evaluate the performance of the proposed method. Experiments show that the estimated non-individual HRTF has small mean square error, and has similar perception effect to the corresponding one obtained from the database. Furthermore, the localization accuracy of personalized HRTF is increased compared to the non-individual HRTF.  相似文献   

4.
Listeners' ability to discriminate interaural time difference (ITD) changes in low-frequency noise was determined as a function of differences in the noise spectra delivered to each ear. An ITD was applied to Gaussian noise, which was bandpass filtered using identical high-pass, but different low-pass cutoff frequencies across ears. Thus, one frequency region was dichotic, and a higher-frequency region monotic. ITD thresholds increased as bandwidth to one ear (i.e., monotic bandwidth) increased, despite the fact that the region of interaural spectral overlap remained constant. Results suggest that listeners can process ITD differences when the spectra at two ears are moderately different.  相似文献   

5.
余光正  谢菠荪  饶丹 《声学学报》2012,37(4):378-385
采用球形正十二面体声源及其空间定位系统,测量并建立了KEMAR人工头的近场头相关传输函数(HRTF)数据库。基于数据库分析了近场HRTF在频域和时域随声源距离变化的规律;讨论了用近场HRTF算得的双耳声级差(TLD)和双耳时间差(ITD)所包含的声源距离定位信息。结果表明,测量系统和所得数据具有较好的重复性和准确性,保留了1 kHz以下的低频定位信息。并且,近场HRTF幅度谱和ILD随声源距离的变化明显;用相关法算得2 kHz以下频段的ITD随声源距离略有变化。本文数据库及其分析结果将为声源距离定位的应用提供基础。   相似文献   

6.
Experiments were conducted with a single, bilateral cochlear implant user to examine interaural level and time-delay cues that putatively underlie the design and efficacy of bilateral implant systems. The subject's two implants were of different types but custom equipment allowed presentation of controlled bilateral stimuli, particularly those with specified interaural time difference (ITD) and interaural level difference (ILD) cues. A lateralization task was used to measure the effect of these cues on the perceived location of the sensations elicited. For trains of fixed-amplitude, biphasic current pulses at 100 pps, the subject demonstrated sensitivity to an ITD of 300 micros, providing evidence of access to binaural information. The choice of bilateral electrode pair greatly influenced ITD sensitivity, suggesting that electrode pairings are likely to be an important consideration in the effort to provide binaural advantages. The selection of bilateral electrode pairs showing sensitivity to ITD was partially aided by comparisons of the pitch elicited by individual electrodes in each ear (when stimulated alone with fixed-amplitude current pulses at 813 pps): specifically, interaural electrodes with similar pitches were more likely (but not certain) to show ITD sensitivity. Significant changes in lateral position occurred with specific electrode pairs. With five bilateral electrode pairs of 14 tested, ITDs of 300 and 600 micros moved an auditory image significantly from right to left. With these same pairs, ILD changes of approximately 11% of the dynamic range (in microApp) moved an auditory image from the far left to the far right-significantly farther than the nine pairs not showing significant ITD sensitivity. However, even these nine pairs did show response changes as a function of the interaural (or confounding monaural) level cue. Overall, insofar as the access to bilateral cues demonstrated herein generalizes to other subjects, it provides hope that the normal binaural advantages for speech recognition and sound localization can be made available to bilateral implant users.  相似文献   

7.
Binaural speech intelligibility in noise for hearing-impaired listeners   总被引:2,自引:0,他引:2  
The effect of head-induced interaural time delay (ITD) and interaural level differences (ILD) on binaural speech intelligibility in noise was studied for listeners with symmetrical and asymmetrical sensorineural hearing losses. The material, recorded with a KEMAR manikin in an anechoic room, consisted of speech, presented from the front (0 degree), and noise, presented at azimuths of 0 degree, 30 degrees, and 90 degrees. Derived noise signals, containing either only ITD or only ILD, were generated using a computer. For both groups of subjects, speech-reception thresholds (SRT) for sentences in noise were determined as a function of: (1) noise azimuth, (2) binaural cue, and (3) an interaural difference in overall presentation level, simulating the effect of a monaural hearing acid. Comparison of the mean results with corresponding data obtained previously from normal-hearing listeners shows that the hearing impaired have a 2.5 dB higher SRT in noise when both speech and noise are presented from the front, and 2.6-5.1 dB less binaural gain when the noise azimuth is changed from 0 degree to 90 degrees. The gain due to ILD varies among the hearing-impaired listeners between 0 dB and normal values of 7 dB or more. It depends on the high-frequency hearing loss at the side presented with the most favorable signal-to-noise (S/N) ratio. The gain due to ITD is nearly normal for the symmetrically impaired (4.2 dB, compared with 4.7 dB for the normal hearing), but only 2.5 dB in the case of asymmetrical impairment. When ITD is introduced in noise already containing ILD, the resulting gain is 2-2.5 dB for all groups. The only marked effect of the interaural difference in overall presentation level is a reduction of the gain due to ILD when the level at the ear with the better S/N ratio is decreased. This implies that an optimal monaural hearing aid (with a moderate gain) will hardly interfere with unmasking through ITD, while it may increase the gain due to ILD by preventing or diminishing threshold effects.  相似文献   

8.
Directional properties of the sound transformation at the ear of four intact echolocating bats, Eptesicus fuscus, were investigated via measurements of the head-related transfer function (HRTF). Contributions of external ear structures to directional features of the transfer functions were examined by remeasuring the HRTF in the absence of the pinna and tragus. The investigation mainly focused on the interactions between the spatial and the spectral features in the bat HRTF. The pinna provides gain and shapes these features over a large frequency band (20-90 kHz), and the tragus contributes gain and directionality at the high frequencies (60 to 90 kHz). Analysis of the spatial and spectral characteristics of the bat HRTF reveals that both interaural level differences (ILD) and monaural spectral features are subject to changes in sound source azimuth and elevation. Consequently, localization cues for horizontal and vertical components of the sound source location interact. Availability of multiple cues about sound source azimuth and elevation should enhance information to support reliable sound localization. These findings stress the importance of the acoustic information received at the two ears for sound localization of sonar target position in both azimuth and elevation.  相似文献   

9.
Users of bilateral cochlear implants and a cochlear implant combined with a contralateral hearing aid are sensitive to interaural time differences (ITDs). The way cochlear implant speech processors work and differences between modalities may result in interaural differences in shape of the temporal envelope presented to the binaural system. The effect of interaural differences in envelope shape on ITD sensitivity was investigated with normal-hearing listeners using a 4?kHz pure tone modulated with a periodic envelope with a trapezoid shape in each cycle. In one ear the onset segment of the trapezoid was transformed by a power function. No effect on the just noticeable difference in ITD was found with an interaural difference in envelope shape, but the ITD for a centered percept was significantly different across envelope shape conditions.  相似文献   

10.
11.
The head related impulse response (HRIR) characterizes the auditory cues created by scattering of sound off a person's anatomy. The experimentally measured HRIR depends on several factors such as reflections from body parts (torso, shoulder, and knees), head diffraction, and reflection/ diffraction effects due to the pinna. Structural models (Algazi et al., 2002; Brown and Duda, 1998) seek to establish direct relationships between the features in the HRIR and the anatomy. While there is evidence that particular features in the HRIR can be explained by anthropometry, the creation of such models from experimental data is hampered by the fact that the extraction of the features in the HRIR is not automatic. One of the prominent features observed in the HRIR, and one that has been shown to be important for elevation perception, are the deep spectral notches attributed to the pinna. In this paper we propose a method to robustly extract the frequencies of the pinna spectral notches from the measured HRIR, distinguishing them from other confounding features. The method also extracts the resonances described by Shaw (1997). The techniques are applied to the publicly available CIPIC HRIR database (Algazi et al., 2001c). The extracted notch frequencies are related to the physical dimensions and shape of the pinna.  相似文献   

12.
This study investigated the effect on gap detection of perceptual channels, hypothesized to be tuned to spatial location or fundamental frequency (f0). Thresholds were measured for the detection of a silent temporal gap between two markers. In the first experiment, the markers were broadband noise, presented either binaurally or monaurally. In the binaural conditions, the markers were either diotic, or had a 640-micros interaural time difference (ITD) or a 12-dB interaural level difference (ILD). Reversing the ITD across the two markers had no effect on gap detection relative to the diotic condition. Reversing the ILD across the two markers produced a marked deterioration in performance. However, the same deterioration was observed in the monaural conditions when a 12-dB level difference was introduced between the two markers. The results provide no evidence for the role of spatially tuned neural channels in gap detection. In the second experiment, the markers were harmonic tone complexes, filtered to contain only high, unresolved harmonics. Using complexes with a fixed spectral envelope, where the f0 (of 140 or 350 Hz) was different for the two markers, produced a deterioration in performance, relative to conditions where the f0 remained the same. A larger deterioration was observed when the two markers occupied different spectral regions but had the same f0. This supports the idea that peripheral coding is dominant in determining gap-detection thresholds when the two markers differ along any physical dimension. Higher-order neural coding mechanisms of f0 and spatial location seem to play a smaller role and no role, respectively.  相似文献   

13.
Sensitivity to binaural timing in bilateral cochlear implant users   总被引:2,自引:0,他引:2  
Various measures of binaural timing sensitivity were made in three bilateral cochlear implant users, who had demonstrated moderate-to-good interaural time delay (ITD) sensitivity at 100 pulses-per-second (pps). Overall, ITD thresholds increased at higher pulse rates, lower levels, and shorter durations, although intersubject differences were evident. Monaural rate-discrimination thresholds, using the same stimulation parameters, showed more substantial elevation than ITDs with increased rate. ITD sensitivity with 6000 pps stimuli, amplitude-modulated at 100 Hz, was similar to that with unmodulated pulse trains at 100 pps, but at 200 and 300 Hz performance was poorer than with unmodulated signals. Measures of sensitivity to binaural beats with unmodulated pulse-trains showed that all three subjects could use time-varying ITD cues at 100 pps, but not 300 pps, even though static ITD sensitivity was relatively unaffected over that range. The difference between static and dynamic ITD thresholds is discussed in terms of relative contributions from initial and later arriving cues, which was further examined in an experiment using two-pulse stimuli as a function of interpulse separation. In agreement with the binaural-beat data, findings from that experiment showed poor discrimination of ITDs on the second pulse when the interval between pulses was reduced to a few milliseconds.  相似文献   

14.
Binaural recordings of noise in rooms were used to determine the relationship between binaural coherence and the effectiveness of the interaural time difference (ITD) as a cue for human sound localization. Experiments showed a strong, monotonic relationship between the coherence and a listener's ability to discriminate values of ITD. The relationship was found to be independent of other, widely varying acoustical properties of the rooms. However, the relationship varied dramatically with noise band center frequency. The ability to discriminate small ITD changes was greatest for a mid-frequency band. To achieve sensitivity comparable to mid-band, the binaural coherence had to be much larger at high frequency, where waveform ITD cues are imperceptible, and also at low frequency, where the binaural coherence in a room is necessarily large. Rivalry experiments with opposing interaural level differences (ILDs) found that the trading ratio between ITD and ILD increasingly favored the ILD as coherence decreased, suggesting that the perceptual weight of the ITD is decreased by increased reflections in rooms.  相似文献   

15.
Two experiments examined the relationship between temporal pitch (and, more generally, rate) perception and auditory lateralization. Both used dichotic pulse trains that were filtered into the same high (3,900-5,400-Hz) frequency region in order to eliminate place-of-excitation cues. In experiment 1, a 1-s periodic pulse train of rate Fr was presented to one ear, and a pulse train of rate 2Fr was presented to the other. In the "synchronous" condition, every other pulse in the 2Fr train was simultaneous with a pulse in the opposite ear. In each trial, subjects concentrated on one of the two binaural images produced by this mixture: they matched its perceived location by adjusting the interaural level difference (ILD) of a bandpass noise, and its rate/pitch was then matched by adjusting the rate of a regular pulse train. The results showed that at low Fr (e.g., 2 Hz), subjects heard two pulse trains of rate Fr, one in the "higher rate" ear, and one in the middle of the head. At higher Fr (>25 Hz) subjects heard two pulse trains on opposite sides of the midline, with the image on the higher rate side having a higher pitch than that on the "lower rate" side. The results were compared to those in a control condition, in which the pulses in the two ears were asynchronous. This comparison revealed a duplex region at Fr > 25 Hz, where across-ear synchrony still affected the perceived locations of the pulse trains, but did not affect their pitches. Experiment 2 used a 1.4-s 200-Hz dichotic pulse train, whose first 0.7 s contained a constant interaural time difference (ITD), after which the sign of the ITD alternated between subsequent pulses. Subjects matched the location and then the pitch of the "new" sound that started halfway through the pulse train. The matched location became more lateralized with increasing ITD, but subjects always matched a pitch near 200 Hz, even though the rate of pulses sharing the new ITD was only 100 Hz. It is concluded from both experiments that temporal pitch perception is not driven by the output of binaural mechanisms.  相似文献   

16.
This study examined the sensitivity of four cochlear implant (CI) listeners to interaural time difference (ITD) in different portions of four-pulse sequences in lateralization discrimination. ITD was present either in all the pulses (referred to as condition Wave), the two middle pulses (Ongoing), the first pulse (Onset), the last pulse (Offset), or both the first and last pulse (Gating). All ITD conditions were tested at different pulse rates (100, 200, 400, and 800 pulses/s pps). Also, five normal hearing (NH) subjects were tested, listening to an acoustic simulation of CI stimulation. All CI and NH listeners were sensitive in condition Gating at all pulse rates for which they showed sensitivity in condition Wave. The sensitivity in condition Onset increased with the pulse rate for three CI listeners as well as for all NH listeners. The performance in condition Ongoing varied over the subjects. One CI listener showed sensitivity up to 800 pps, two up to 400 pps, and one at 100 pps only. The group of NH listeners showed sensitivity up to 200 pps. The result that CI listeners detect ITD from the middle pulses of short trains indicates the relevance of fine timing of stimulation pulses in lateralization and therefore in CI stimulation strategies.  相似文献   

17.
A human psychoacoustical experiment is described that investigates the role of the monaural and interaural spectral cues in human sound localization. In particular, it focuses on the relative contribution of the monaural versus the interaural spectral cues towards resolving directions within a cone of confusion (i.e., directions with similar interaural time and level difference cues) in the auditory localization process. Broadband stimuli were presented in virtual space from 76 roughly equidistant locations around the listener. In the experimental conditions, a "false" flat spectrum was presented at the left eardrum. The sound spectrum at the right eardrum was then adjusted so that either the true right monaural spectrum or the true interaural spectrum was preserved. In both cases, the overall interaural time difference and overall interaural level difference were maintained at their natural values. With these virtual sound stimuli, the sound localization performance of four human subjects was examined. The localization performance results indicate that neither the preserved interaural spectral difference cue nor the preserved right monaural spectral cue was sufficient to maintain accurate elevation judgments in the presence of a flat monaural spectrum at the left eardrum. An explanation for the localization results is given in terms of the relative spectral information available for resolving directions within a cone of confusion.  相似文献   

18.
Psychometric functions were measured for the discrimination of the interaural phase difference (IPD) of the envelope of a sinusoidally amplitude-modulated (SAM) 4-kHz pure tone for modulation frequencies of 128 and 300 Hz and modulation depths (m) of 0.2, 0.6, 0.9, and 1.0. Contrary to recent modeling assumptions, it was found that a constant change in normalized interaural envelope correlation, with or without additional model stages to simulate peripheral auditory processing, did not produce a constant level of performance. Rather, in some cases, performance could range from chance to near perfect across modulation depths for a given change in normalized interaural envelope correlation. This was also true for the maximum change in normalized interaural envelope correlation computed across the cross-correlation functions for the stimuli to be discriminated. The change in the interaural time difference (ITD) computed from the IPD accounted for discriminability across modulation depths better than the change in normalized interaural envelope correlation, although ITD could not account for all the data, particularly those for lower values of m.  相似文献   

19.
In everyday complex listening situations, sound emanating from several different sources arrives at the ears of a listener both directly from the sources and as reflections from arbitrary directions. For localization of the active sources, the auditory system needs to determine the direction of each source, while ignoring the reflections and superposition effects of concurrently arriving sound. A modeling mechanism with these desired properties is proposed. Interaural time difference (ITD) and interaural level difference (ILD) cues are only considered at time instants when only the direct sound of a single source has non-negligible energy in the critical band and, thus, when the evoked ITD and ILD represent the direction of that source. It is shown how to identify such time instants as a function of the interaural coherence (IC). The source directions suggested by the selected ITD and ILD cues are shown to imply the results of a number of published psychophysical studies related to source localization in the presence of distracters, as well as in precedence effect conditions.  相似文献   

20.
Sensitivity to interaural time differences (ITDs) with unmodulated low-frequency stimuli was assessed in bimodal listeners who had previously shown to be good performers in ITD experiments. Two types of stimuli were used: (1) an acoustic sinusoid combined with an electric transposed signal and (2) an acoustic sinusoid combined with an electric clicktrain. No or very low sensitivity to ITD was found for these stimuli, even though subjects were highly trained on the task and were intensively tested in multiple test sessions. In previous studies with users of a cochlear implant (CI) and a contralateral hearing aid (HA) (bimodal listeners), sensitivity was shown to ITD with modulated stimuli with frequency content between 600 and 3600 Hz. The outcomes of the current study imply that in speech processing design for users of a CI in combination with a HA on the contralateral side, the emphasis should be more on providing salient envelope ITD cues than on preserving fine-timing ITD cues present in acoustic signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号