首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于支持回归支持向量机模型,建立了一种对时态数据预测的方法,可以对多属性时态数据进行预测,实验结果表明该方法在预测上具有一定的稳定性和准确性.  相似文献   

2.
目的 为了减少风电场风速预测的误差,研究基于支持向量机(SVM)模型的短期风速预测.方法 采用SVM回归估计算法建立预测模型.结果 将该方法应用于实测数据进行预测,结果表明预测误差确实得到了降低.结论 和传统回归方法(如ARMA)比较说明所建模型是可行和有效的.  相似文献   

3.
探讨了基于最小二乘支持向量机的组合预测模型在风速短期预测中的可行性.该模型以BP神经网络、RBF神经网络、粒子群BP神经网络3种预测模型的风速预测值作为组合预测模型的输入,实际风速值为输出,利用最小二乘支持向量机回归算法构造风速间的非线性关系,以实现风速多步预测.将该模型的预测性能与BP神经网络组合预测模型、线性组合预测模型进行比较,通过平均绝对误差、误差平方和、平均相对误差3个指标进行评价.结果表明,最小二乘支持向量机预测模型的平均相对误差低于6%,其他误差指标也明显低于其他预测模型.因此,最小二乘支持向量机组合预测模型预测精度不仅高于任一单项预测模型预测精度,而且高于传统的线性组合预测模型与一般BP神经网络组合预测模型.验证了该模型在风速预测中的可行性.  相似文献   

4.
基于支持向量机核函数的条件,将Sobolev Hilbert空间的再生核函数和Sig核函数进行有效的线性混合,给出一种新的支持向量机的混合核函数,并提出一种基于再生核的混合核函数支持向量机回归模型,该回归模型兼具了全局核函数与局部核函数的优点,且算法的复杂度被降低.仿真实验结果表明:最小二乘支持向量机的核函数采用基于再生核的混合核函数是可行的,回归的效果比单核函数可以更为细腻.  相似文献   

5.
基于支持向量回归机的中国碳排放预测模型   总被引:2,自引:0,他引:2  
选取人口、城镇化率、人均GDP、服务业增加值比重、单位GDP能耗、煤炭消费比例等6项影响因素作为自变量,运用支持向量回归机方法构建中国碳排放预测模型。以1980—2009年碳排放及影响因素数据为样本,通过训练、测试得到具有良好学习与推广能力的支持向量回归机模型。结合"十二五"规划,设置不同情境下影响因素预测值,对2010—2015年中国碳排放进行预测。预测结果表明,中国可适当降低GDP增速,不断优化能源结构,以确保碳减排目标的有效实现。  相似文献   

6.
基于遗传算法的支持向量机短期风速预测   总被引:1,自引:0,他引:1  
对风电场风速实现较准确的预测,可以有效减轻并网后风电场对电网的影响。支持向量机模型的预测精度在很大程度上依赖于模型参数的选择,为提高预测模型的泛化能力和预测精度,应用遗传算法选择支持向量机的模型参数,再根据选择的参数对小时风速进行预测。实验结果表明本文方法能够获得较高的风速预测精度。  相似文献   

7.
采用支持向量机理论建立了一种新的支持向量回归预测模型,模型的求解可转化为二次规划问题,并能实现模型参数的自动选择,运用MATALAB软件进行编程实现.用此模型对我国财政收入问题进行了预测,并与统计回归模型进行了比较,结果表明了该模型具有较好的预测效果和概化能力.  相似文献   

8.
针对股市的非线性和不确定性的特点,本文提出了一种基于支持向量机自回归分析的股市动态预测模型。该模型利用滚动时间窗动态截取股票时间序列,然后对其进行相空间重构,最后利用支持向量机回归算法,在高维映射空间中求解线性回归问题。利用上证综指的长期和短期数据对该模型的预测效果进行了验证,并将预测结果与RBF神经网络预测模型进行了的对比。预测和对比结果表明,支持向量机自回归预测模型具有较强的泛化能力,适合于股市预测。  相似文献   

9.
基于支持向量机核函数的条件和Sobolev Hilbert空间H1(R;a,b)的再生核,提出了一种称为最小二乘支持向量机的新的回归模型,并将该回归模型应用于信号回归的仿真实验中.实验表明,最小二乘支持向量机的核函数采用再生核是可行的,它优于常用的高斯核函数.  相似文献   

10.
基于自适应核函数的支持向量数据描述算法   总被引:4,自引:0,他引:4  
为进一步提高支持向量分类器的分类精度和运行速度,提出了基于自适应核函数的支持向量数据描述分类算法。该算法的核心思想为:根据信息几何中保角映射的方法构造数据驱动的核函数修正算法,然后再利用修正的核函数训练支持向量数据描述分类算法。试验结果表明,该方法具有较好的分类精度和较快的运行速度。  相似文献   

11.
回归函数的支持向量机估计法   总被引:4,自引:0,他引:4  
回归估计是统计学中基本问题之一,本文在归纳了其经典的估计方法之后,总结了支持向量机估计回归函数方法。并从理论和应用角度阐述了支持向量机的基本思想。  相似文献   

12.
支持向量回归机(SVR)和孪生支持向量回归机(TSVR)是机器学习中的常用算法.受TSVR启发,针对SVR训练速度和预测精度问题,提出一种新型非平行平面支持向量回归机(NNHSVR).NNHSVR的优势如下:(1)NNHSVR模型构造的是两个较小规模的二次规划问题,最终求解得到2个非平行平面,训练速度较SVR快;(2)NNHS-VR在目标函数中加入调节参数u,对边界函数进行约束,使得模型对离群点更加鲁棒.人工数据集和UCI数据集上的实验表明:NNHSVR算法不仅有较好的泛化性能,而且训练速度快.将NNHSVR算法应用于传染病预测问题,取得了比传统传染病预测模型BP神经网络更好的效果.  相似文献   

13.
提出一种基于遗传算法优化支持向量回归机的模型进行网格负载预测,使用遗传算法和交叉验证技术解决了支持向量回归机参数难以确定的问题.标准数据集仿真实验结果表明,该模型与试验法定参的支持向量回归机和BP神经网络相比具有更优的预测性能.  相似文献   

14.
为更精确地进行风速预测,提出一种利用带自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法和蝙蝠算法(bat algorithm,BA)优化支持向量机(support vector machine,SVM)的组合短期风速预测方法。首先用CEEMDAN对原始风速时间序列进行分解,得到一系列不同频率的子序列;其次,使用BA-SVM组合模型预测对分解后的各个子序列分别进行预测;最后,将各子序列的预测结果叠加得到风速预测值。仿真结果表明,该模型提高了预测精度,减小了误差。  相似文献   

15.
基于信息几何理论, 提出一种新的支持向量机核函数改进算法. 利用与数据有关的保角映射, 使核函数具有数据依赖性. 对股票价格数据进行预测的数值模拟结果表明, 改进算法比常规模型具有更好的预测精度.  相似文献   

16.
为了提高网络流量的预测精度,准确描述网络流量变化规律,提出了一种基于向量回归的网络流量预测模型,它能全面刻画网络流量变化趋势.  相似文献   

17.
基于支持向量机的短期负荷预测   总被引:1,自引:0,他引:1  
讨论了现有的支持向量机回归参数选取方法.针对负荷预测建模,采用交叉验证的方法对参数进行选取,得到的最优参数对未来的峰荷进行预测,仿真结果表明了该方法的有效性.  相似文献   

18.
支持向量机(Support VectorMachine,SVM)是近年来受到广泛关注的一种学习机器.将支持向量机引入环境时序预测中,有效地求解了空气中降尘的预测问题.实验结果表明,支持向量机不仅具有较强的理论背景,而且具有更强的预测预报能力.  相似文献   

19.
综合最小二乘回归估计和支持向量机回归估计算法的各自在回归理论上的优势,通过理论推导,提出一种改进的支持向量机回归估计算法--SVR-LS方法.然后通过实验对比验证,发现新方法不但在拟合逼近方面有不错的效果,而且在回归估计方面,其学习速度和精度都要优于标准的支持向量机回归估计算法.  相似文献   

20.
 利用最小二乘方法和临近支持向量机(PSVM)算法,并结合双胞支持向量机(TSVR),提出了最小二乘双胞支持向量回归机(LSTSVR).作为对照,TSVR需要求解2个二次规划问题,而LSTSVR仅需求解2个线性方程组.最后利用不同的实例验证了所提算法的可行性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号