首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectroscopy of single InAs/InP quantum dots emitting close to 1.55 μm is described. The dots are produced using a nanotemplate deposition technique that allows precise, a priori control of quantum dot position and electronic configuration. The experimentally observed luminescence signal from the p-shell is composed of several lines. Using exact diagonalization calculations of the emission spectra we interpret the splittings between these lines in terms of Coulomb induced, many-body renormalization of the excitonic states and a template-induced shape asymmetry of the quantum dot.  相似文献   

2.
3.
We discuss the preparation and spectroscopic characterisation of a single InAs/InP quantum dot suitable for long-distance quantum key distribution applications around λ=1.55 μm. The dot is prepared using a site-selective growth technique which allows a single dot to be deposited in isolation at a controlled spatial location. Micro-photoluminescence measurements as a function of exciton occupation are used to determine the electronic structure of the dot. Biexciton emission, shell filling and many-body re-normalization effects are observed for the first time in single InAs/InP quantum dots.  相似文献   

4.
An efficient mechanical and electronic axial approximation of the strained 8 × 8 Hamiltonian is proposed for zinc-blende nanostructures with a cylindrical shape on (100) substrates. Vertically stacked InAs/InP columnar quantum dots (CQDs) for polarization insensitive semiconductor optical amplifier (SOA) in telecommunications applications are studied theoretically. Non-radiative Auger processes in InAs/InP quantum dots (QDs) are also investigated. It is shown that a multiband approach is necessary in both cases.  相似文献   

5.
In this paper, we review our latest developments on the growth and properties of self-assembling quantum dot structures. The self-assembling growth technique which was initially developed using molecular beam epitaxy (MBE), has now been extended to metalorganic chemical vapor deposition (MOCVD). The paper first presents structural results based on atomic force and transmission electron microscopy studies of the quantum dot arrays which were obtained by MBE and MOCVD growth. From the detailed structural analysis we have observed that the formation of coherently strained dots of InAs, InAlAs, and InP dots on various cladding layer surfaces. MBE growth of InAs self-assembled dots has achieved the smallest size distribution, with dots as small as 12nm in diameter. For the MOCVD growth of InP dots we have found that the surface morphology and growth temperature of lower cladding layer growth has a profound influence on island size and density. Recent results on the optical and transport properties of the MBE grown self-assembling dot (SAD) arrays are also presented.  相似文献   

6.
We studied the growth of InAs quantum dots on InP (0 0 1) substrates in a low-pressure metalorganic chemical vapor deposition by using a so-called InP ‘double-cap’ procedure. With double-capping, a photoluminescence spectrum is modified into a series of multiple peaks, where the emission peaks arise from several quantum dot families with different heights changing in a step of integer number of an InAs monolayer. Cross-sectional transmission electron micrograph observations revealed that the shape of double-capped dots is dramatically changed into a thin plate-like shape with extremely flat upper and lower interfaces, being consistent with our interpretation of the photoluminescence spectrum. We showed that the procedure was extremely useful for controlling the emission wavelength from quantum dots in an InAs/InP (0 0 1) system.  相似文献   

7.
Using atomistic pseudopotential and configuration-interaction many-body calculations, we predict an excitonic ground state in the InAs/InSb quantum-dot system. For large dots, the conduction band minimum of the InAs dot lies below the valence band maximum of the InSb matrix. Due to quantum confinement, at a critical size calculated here for various shapes, the gap E(g) between InAs conduction states and InSb valence states vanishes. Strong electron-hole correlation effects are induced by the spatial proximity of the electron and hole wave functions, and by the lack of strong (exciton unbinding) screening, afforded by the existence of discrete 0D confined energy levels. These correlation effects overcome E(g), leading to the formation of a biexcitonic ground state (two electrons in InAs and two holes in InSb) being energetically more favorable (by approximately 15 meV) than the dot without excitons.  相似文献   

8.
In this paper, the impact of wetting layer, strain reducing layer and dot height on the electronic, linear and nonlinear optical properties of bound to continuum states transitions are investigated in a system of InAs truncated conical shaped quantum dot covered with the InxGa1−x As strain reducing layer. The electronic structure, containing two main states of S and wetting layer states (WL), was calculated by solving one electronic band Hamiltonian with effective-mass approximation. The results reveal that the presence of the strain reducing layer in the structure extends the quantum dot emission to longer wavelength which is reported as a red-shift of the photoluminescence (PL) peak in the experimental measurement. This study also highlights the possibility of improving the intersubband optical properties based on the significant size-dependence of the three layer dot matrix by employing the strain reducing and wetting layers. According to this simulation, relatively tall dots on the thick wetting layer introduce the optimized structure size for practical applications to meet the SRL assisted enhanced dot structure.  相似文献   

9.
In this paper, the electronic structure of an asymmetric self-assembled vertically coupled quantum dots heterostructure has been investigated. The structure consists of two ellipsoidal quantum dot (QDs) caps made with InAs embedded in a wetting layer InAs and surrounded by GaAs. Using the strain dependent k·p theory, the energy of the two lowest states of a single electron/hole which is confined within the coupled QD structure has been calculated. As a result, it can be estimated the energy gap for different geometry parameters and for tuning the external magnetic field. The numerical results show that the energy gap is very sensitive to the size asymmetry of the structure and to the small separation distance of the dots but less sensitive to the existence of an external magnetic field and large interdot distance.  相似文献   

10.
We studied optical and electron transport properties of coupled InAs quantum dots (QDs) embedded in GaAs. Photoluminescence (PL) from the high dot density samples indicated asymmetry in the PL spectra when the ambient temperature is lower than about 50 K. Comparing this result with theoretical calculations, it is shown that this phenomenon is explained by the inter-dot electronic coupling effect. In the photo-conductance measurement, resonance peaks in the current–voltage characteristics were observed in the low-temperature region. The dependence of the resonance voltage on the magnetic field intensity was studied to extract the g-factor. It is also shown that the resonances are attributed to the current corresponding to the electron transport through QDs. According to these results, it is concluded that the inter-dot electronic coupling in the self-assembled InAs/GaAs QD systems occurs when the inter-dot spacing is as low as several nanometers and the ambient temperature is less than about 50 K.  相似文献   

11.
A systematic dependence of excitonic properties on the size of self-organized InAs/GaAs quantum dots is presented. The bright exciton fine-structure splitting changes from negative values to more than 0.5 meV, and the biexciton binding energy varies from antibinding to binding, as the height of truncated pyramidal dots increases from 2 to above 9 InAs monolayers. A novel mode of metalorganic vapor phase epitaxy was developed for growing such quantum dots with precise shape control. The dots consist of pure InAs and feature heights varying in steps of complete InAs monolayers. Such dot ensembles evolve from a strained, rough two-dimensional layer with a thickness close to the critical value for the onset of the 2D–3D transition. Dots with a common height represent subensembles with small inhomogeneous broadening. Tuning of subensemble emission energy is achieved by varying the mean lateral extension of the respective QDs. Detailed knowledge of the structural properties of individual dots enable realistic k·p calculations to analyze the origin of the observed excitonic properties. The binding energies of charged and neutral excitons increase due to correlation by the gradually increasing number of bound states for increasing dot size. The monotonously increasing magnitude of the fine-structure splitting with dot size is shown to be caused by piezoelectricity. The identification of key parameters allows to tailor exciton properties, providing a major step towards the development of novel applications.  相似文献   

12.
We have calculated the strain distribution and electronic structures in stacked InAs/GaAs quantum dots (QDs) with the dot spacing 6–. We used the elastic continuum theory for the strain distribution, and the 8-band k·p theory for the electronic structures. For the triply stacked QDs, the light-hole (LH) component of the hole ground state increases with decreasing the dot spacing. The LH component in the columnar QD (dot spacing ) reaches 21.1% which is 4.8 times larger than that in the single QD due to the reduction of the biaxial strain. Further increase of the LH component (up to 28.6%) is obtained in the fivefold-stacked columnar QD. This result suggests a possibility of increase in the TM-mode transition in the columnar QDs.  相似文献   

13.
FEM combining with the K·P theory is adopted to systematically investigate the effect of wetting layers on the strain-stress profiles and electronic structures of self-organized InAs quantum dot. Four different kinds of quantum dots are introduced at the same height and aspect ratio. We found that 0.5 nm wetting layer is an appropriate thickness for InAs/GaAs quantum dots. Strain shift down about 3%∼4.5% for the cases with WL (0.5 nm) and without WL in four shapes of quantum dots. For band edge energy, wetting layers expand the potential energy gap width. When WL thickness is more than 0.8 nm, the band edge energy profiles cannot vary regularly. The electron energy is affected while for heavy hole this impact on the energy is limited. Wetting layers for the influence of the electronic structure is obviously than the heavy hole. Consequently, the electron probability density function spread from buffer to wetting layer while the center of hole's function moves from QDs internal to wetting layer when introduce WLs. When WLs thickness is larger than 0.8 nm, the electronic structures of quantum dots have changed obviously. This will affect the instrument's performance which relies on the quantum dots' optical properties.  相似文献   

14.
Selectively-doped heterostructures based on both GaAs and InP containing several atomic layers coverage of InAs as both strained 2D and partially relaxed 3D (quantum dot) have been grown by gas source molecular beam epitaxy and the transport properties have been investigated. We show that while coherently strained InAs in 2D layers results in increased electron mobilities, the formation of 3D quantum dots appear to trap electrons and decrease significantly the mobility of those remaining. The degree of trapping is dependent on the size and density of the dots.  相似文献   

15.
The optical properties of InAs/AlyGa1−yAs self-assembled quantum dots are studied as a function of temperature from 10 K to room temperature. The temperature dependence of carrier hopping between dots is discussed in terms of the depth of the dot confinement potential and the dispersion in dot size and composition. We show that carrier hopping between dots influences both the electrical and optical properties of laser devices having dots as active medium.  相似文献   

16.
Exciton relaxation in self-assembled semiconductor quantum dots   总被引:1,自引:0,他引:1  
The present study focuses on the effect of excited states on the exciton–polaron spectrum for self-assembled InAs/GaAs semiconductor quantum dots. The analytical model takes into account the Coulomb interactions between the electron and the hole as well as, each carrier, the coupling with the longitudinal optical phonon field. Furthermore, the key role played by the exciton continuum in the dot spectrum is also introduced. Such an approach is well fitted to analyze recent experimental findings about single-dot spectroscopy and allows peaks assignment, line width estimation, relaxation time evaluation, etc., necessary steps toward an understanding of the internal dynamics of quantum dots.  相似文献   

17.
We have performed single dot photoluminescence and time-resolved ensemble photoluminescence measurements on InAs quantum dots embedded in a lateral in-plane p–i–n or n–i–n device, respectively, which makes the application of lateral electric fields, i.e. field direction perpendicular to the growth direction, feasible. Time-resolved measurements show an increase in the radiative lifetime of up to 30% with increasing field. We attribute this to the reduced overlap between the electron and hole wave functions. Single dot spectroscopy revealed a small red-shift of the emission energies of maximum 0.5 meV. This shift can be explained by the quantum confined Stark effect taking into account that the red-shift due to the band-tilting is partly compensated by a decrease in exciton binding energy.  相似文献   

18.
Self-assembled InAs quantum dots (QDs) on In0.52Al0.48As layer lattice matched to (1 0 0) InP substrates have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). TEM observations indicate that defect-free InAs QDs can be grown to obtain emissions over the technologically important 1.3–1.55 μm region. The PL peak positions for the QDs shift to low energy as the InAs coverage increases, corresponding to increase in QD size. The room temperature PL peak at 1.58 μm was observed from defect-free InAs QDs with average dot height of 3.6 nm.  相似文献   

19.
Strain distribution and optical properties in a self-assembled pyramidal InAs/GaAs quantum dot grown by epitaxy are investigated. A model, based on the theory of linear elasticity, is developed to analyze three-dimensional induced strain field. In the model, the capping material in the heterostructure is omitted during the strain analysis to take into account the sequence of the fabrication process. The mismatch of lattice constants is the driving source of the induced strain and is treated as initial strain in the analysis. Once the strain analysis is completed, the capping material is added back to the heterostructure for electronic band calculation. The strain-induced potential is incorporated into the three-dimensional steady-state Schrödinger equation with the aid of Pikus–Bir Hamiltonian with modified Luttinger–Kohn formalism for the electronic band structure calculation. The strain field, the energy levels and wave functions are found numerically by using of a finite element package FEMLAB. The energy levels as well as the wave functions of both conduction and valence bands of quantum dot are calculated. Finally, the transition energy of ground state is also computed. Numerical results reveal that not only the strain field but also all other optical properties from current model show significant difference from the counterparts of the conventional model.  相似文献   

20.
We report on the optical properties of nanoscale InAs quantum dots in a Si matrix. At a growth temperature of 400°C, the deposition of 7 ML InAs leads to the formation of coherent islands with dimensions in the 2–4 nm range with a high sheet density. Samples with such InAs quantum dots show a luminescence band in the 1.3 μm region for temperatures up to 170 K. The PL shows a pronounced blue shift with increasing excitation density and decays with a time constant of 440 ns. The optical properties suggest an indirect type II transition for the InAs/Si quantum dots. The electronic structure of InAs/Si QDs is discussed in view of available band offset information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号