首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The J-multiplied HSQC experiment (MJ-HSQC: S. Heikkinen et al., J. Magn. Reson 137, 243 (1999)) amplifies J coupling constants m times and allows direct observation of the (3)J(HNHalpha) coupling constants of peptides and proteins (<10 kDa). The drawbacks to this method are line broadening in the f(1)-dimension and lower sensitivity. In the J-multiplied HMQC (MJ-HMQC) experiment described here, the PEP-HSQC pulse sequence is replaced by a sensitivity-enhanced HMQC section, and the total decay time for the J-coupling and the chemical shift evolution is shortened by a period of t(1). This experiment affords narrower linewidth and enhances the sensitivity by 34%, on an average of 105 well-isolated peaks, when compared with the MJ-HSQC experiment.  相似文献   

2.
A two-dimensional HSQC-based NMR method, (15)N-COSMO-HSQC, is presented for the rapid determination of homonuclear (3)J(HNHalpha) couplings in (15)N-labeled proteins in solution. Scalar couplings are extracted by comparing the intensity of two separate datasets recorded with and without decoupling of the (3)J(HNHalpha) during a preparation period. The scalar couplings are introduced through a cosine modulation of the peak intensities. The experiment relies on a BIRD sandwich to selectively invert all amide protons H(N) and is very simple to implement. (3)J(HNHalpha) couplings were determined using both the (15)N-COSMO-HSQC and quantitative-J on (15)N-labeled chemokine RANTES. The two experiments show well-correlated values.  相似文献   

3.
A new method for the accurate determination of carbon-carbon coupling constants is described. The method is based on a modified ADEQUATE experiment, where a J-modulated spin-echo sequence precedes the ADEQUATE pulse scheme. The J-modulation and scaling of carbon-carbon couplings is based on simultaneous incrementation of 13C chemical shift and coupling evolution periods. The time increment for the homonuclear carbon-carbon coupling evolution can be suitably scaled with respect to the corresponding increment for the chemical shift evolution. Typically a scaling factor of 2 to 3 is employed for the measurement of one-bond coupling constants, while multiplication by a factor of 10 to 15 is applied when small long-range couplings are determined. The same pulse scheme with coupling evolution period optimized for one-bond or long-range couplings allows the determination of the corresponding carbon-carbon coupling constants. The splittings of the ADEQUATE crosspeaks in the F1 dimension yield the appropriately multiplied coupling constants.  相似文献   

4.
Novel E.COSY-type HSQC experiments are presented for the accurate measurement of one-bond 15N-1H(N) and 15N-13C(') and two-bond 13C(')-1H(N) residual dipolar couplings in proteins. Compared with existing experiments, the (delta,J)-E.COSY experiments described here are composed of fewer pulses and the resulting spectra exhibit 1.4 times the sensitivity of coupled HSQC spectra. Since residual dipolar couplings play increasingly important roles in structural NMR, the proposed methods should find wide spread application for structure determination of proteins and other biological macromolecules.  相似文献   

5.
Two methods for the measurement of (2)J(NCalpha) and (1)J(NCalpha) in (15)N/(13)C-labeled small and medium-size proteins are described. The current approach is based on simplified (13)C(alpha)-coupled (15)N HSQC spectra, where the two (2)J(NCalpha) doublets are separated into two subspectra corresponding to the alpha and beta spin states of the residue's own alpha carbon. The displacement of the two (2)J(NCalpha) doublets between the two subspectra provides an accurate value for (1)J(NCalpha). The alpha/beta filtration is achieved by taking the sum and difference of the recorded complementary in-phase and antiphase J-coupled spectra. J-multiplication is utilized in one of the proposed methods. In this method, an additional coupling evolution period, which is incremented in concert with t(1), is included in the pulse sequence making it possible to scale the peak-to-peak separation.  相似文献   

6.
This paper describes the use of a TROSY experimental scheme and its variant extended with a scaled J-modulation spin-echo sequence for accurate and sensitive measurement of homonuclear 3J(H(N)H(alpha)) coupling constants in larger proteins with uniform 15N labeling. Exclusive selection of the most slowly relaxing component of a 15N-1H multiplet by the TROSY approach leads to substantial improvement in resolution; this is a prerequisite for accurate measurement of couplings from the 1H multiplets directly along the 1H frequency dimension or from the J-scaled doublets along the 15N frequency dimension.  相似文献   

7.
The angular information content of residual dipolar couplings between nuclei of fixed distance makes the accurate and sign-sensitive measurement of (1JCH + DCH) and (2JHH + DHH) couplings highly desirable. Experiments published so far are typically highly specialized for the effective measurement of a subset of couplings. The P.E.HSQC presented here, is an E.COSY based experiment which allows the simultaneous measurement of all heteronuclear and homonuclear couplings within CH, CH2, and CH3 groups in a single spectrum with the necessary precision and sign information. The simplicity of the approach and the absence of artefacts like phase distortions due to antiphase evolution make it ideally suited for coupling determination of organic molecules at natural abundance.  相似文献   

8.
Transverse relaxation-optimized NMR experiment (TROSY) for the measurement of three-bond scalar coupling constant between (1)H(alpha)(i-1) and (15)N(i) defining the dihedral angle psi is described. The triple-spin-state-selective experiment allows measurement of (3)J(H(alpha)N) from (13)C(alpha), (15)N, and (1)H(N) correlation spectra H(2)O with minimum resonance overlap. Transverse relaxation of (13)C(alpha) spin is minimized by using spin-state-selective filtering and by acquiring a signal longer in (15)N-dimension in a manner of semi-constant-time TROSY evolution. The (3)J(H(alpha))(N) values obtained with the proposed alpha/beta-HN(CO)CA-J TROSY scheme are in good agreement with the values measured earlier from ubiquitin in D(2)O using the HCACO[N] experiment.  相似文献   

9.
A simple method for accurately measuring (3)J(H(N))(H(alpha)) coupling constants in (15)N-labeled proteins is described. This semi-constant-time HMSQC-HA experiment combines the rapidity and convenience of the recently introduced CT-HMQC-HA scheme (Postingl and Otting, J. Biomol. NMR 12, 319-324 (1998)) with the high resolution and robustness of the HSQC experiment. The proposed method is demonstrated for the 76-residue human ubiquitin and Saccharopolyspora erythraea calerythrin (176 residues). Our results imply that the SCT-HMSQC-HA experiment is suitable also for proteins with less favorable NMR properties due to its good resolution and sensitivity.  相似文献   

10.
The spectra of molecules oriented in liquid crystalline media are dominated by partially averaged dipolar couplings. In the 13C-1H HSQC, due to the inefficient hetero-nuclear dipolar decoupling in the indirect dimension, normally carried out by using a pi pulse, there is a considerable loss of resolution. Furthermore, in such strongly orienting media the 1H-1H and 13C-1H dipolar couplings leads to fast dephasing of transverse magnetization causing inefficient polarization transfer and hence the loss of sensitivity in the indirect dimension. In this study we have carried out 13C-1H HSQC experiment with efficient polarization transfer from 1H to 13C for molecules aligned in liquid crystalline media. The homonuclear dipolar decoupling using FFLG during the INEPT transfer delays and also during evolution period combined with the pi pulse heteronuclear decoupling in the t1 period has been applied. The studies showed a significant reduction in partially averaged dipolar couplings and thereby enhancement in the resolution and sensitivity in the indirect dimension. This has been demonstrated on pyridazine and pyrimidine oriented in the liquid crystal. The two closely resonating carbons in pyrimidine are better resolved in the present study compared to the earlier work [H.S. Vinay Deepak, Anu Joy, N. Suryaprakash, Determination of natural abundance 15N-1H and 13C-1H dipolar couplings of molecules in a strongly orienting media using two-dimensional inverse experiments, Magn. Reson. Chem. 44 (2006) 553-565].  相似文献   

11.
J couplings between (13)C(alpha) and (1)H(N) across hydrogen bonds in proteins are reported for the first time, and a two- or three-dimensional NMR technique for their measurement is presented. The technique exploits the TROSY effect, i.e., the degree of interference between dipolar and chemical shift anisotropy relaxation mechanisms, for sensitivity enhancement. The 2D or 3D spectra exhibit E.COSY patterns where the splittings in the (13)CO and (1)H(N) dimensions are (1)J((13)C(alpha), (13)CO) and the desired (3h)J((13)C(alpha), (1)H(N)), respectively. A demonstration of the new method is shown for the (15)N,(13)C-labeled protein chymotrypsin inhibitor 2 where 17 (3h)J((13)C(alpha), (1)H(N)) coupling constants ranging from 0 to 1.4 Hz where identified and all of positive sign.  相似文献   

12.
An NMR pulse sequence is proposed for the simultaneous determination of side chain chi1 torsion-angle related (3)J(N,Cgamma) and (3)J(C', Cgamma) couplings in aromatic amino acid spin systems. The method is of the quantitative J correlation type and takes advantage of attenuated (15)N and (1)H transverse relaxation by means of the TROSY principle. Unlike previously developed schemes for the measurement of either of the two coupling types, spectra contain internal reference peaks that are usually recorded in separate experiments. Therefore, the desired information is extracted from a single rather than four data sets. The new method is demonstrated with uniformly (13)C/(15)N labeled Desulfovibrio vulgaris flavodoxin, which contains 14 aromatic out of 147 total amino acid residues.  相似文献   

13.
采用15N-1H的2D HSQC、HMBC实验方法,测定了天然丰度的N-磷酰化氨基酸样品在溶液中的15N化学位移δN及偶合常数JN-P,JN-H. 实验表明:对于15N天然丰度样品,这是一种快速有效的实验方法. 研究发现:N-酰化后的氨基酸,其δN以及与氮原子直接相连的质子1H的化学位移均发生十分明显的高场位移,而偶合常数1JN-P,1JN-H的变化与化合物构型相关联 .  相似文献   

14.
We report a G-BIRD(r) modified coupled HSQC experiment for the accurate determination of one-bond heteronuclear residual dipolar couplings. The G-BIRD(r) module has been employed to refocus the long-range coupling evolution of the heteronucleus during the t1 frequency labeling period. As a result, the crosspeaks obtained are split by only the direct one-bond coupling that can be extracted by measuring simple frequency differences between singlet maxima. Additionally the decoupling of long-range multiple bond splittings leads to considerable sensitivity enhancement. The modification also has been applied in a TROSY sequence resulting in a significant sensitivity and resolution improvement.  相似文献   

15.
In the presence of scalar (J) and residual dipolar (D) couplings, the transfer efficiency of homonuclear Hartmann-Hahn and COSY-type mixing depends on the ratio D/J and on the mixing sequence. This dependence is analyzed theoretically and the results are confirmed experimentally. At least two different mixing sequences are required to yield good transfer efficiencies for all ratios D/J. In contrast to COSY-type experiments, homonuclear Hartmann-Hahn sequences can provide efficient transfer even if the sum of D and J is zero, i.e., if the coupling vanishes in the weak coupling limit.  相似文献   

16.
The experimental parameters critical for the implementation of multidimensional solid-state NMR experiments that incorporate heteronuclear spin exchange at the magic angle are discussed. This family of experiments is exemplified by the three-dimensional experiment that correlates the (1)H chemical shift, (1)H-(15)N dipolar coupling, and (15)N chemical shift frequencies. The broadening effects of the homonuclear (1)H-(1)H dipolar couplings are suppressed using flip-flop (phase- and frequency-switched) Lee-Goldburg irradiations in both the (1)H chemical shift and the (1)H-(15)N dipolar coupling dimensions. The experiments are illustrated using the (1)H and (15)N chemical shift and dipolar couplings in a single crystal of (15)N-acetylleucine.  相似文献   

17.
A model is proposed for collating fundamental and incremental component couplings to account for substituent effects on (3)J arising from, for example, amino-acid type variation. The unique topology patterns encountered in each of the common amino acids were modeled by assigning substituents on a (3)J coupling path to four simple categories comprising only relative positions: central (inner) vs. terminal (outer) and first-sphere vs. second-sphere. Associated increment values then reflect the influences on each (3)J coupling accessible for torsion-angle determination. Facility of use of this model, in comparison with previous ones, owes to its strict limitation to no more than three Karplus coefficients for each specific torsion-angle dependency derived. The model was integrated in the concept of self-consistent (3)J analysis and applied to polypeptide fragments X-N-C(alpha)-Y and X-C(alpha)-C(beta)-Y related to torsions phi and chi(1), respectively, yielding quantitative effects of both first- and second-sphere substituents. Regarding the polypeptide backbone, the model predicts first-sphere substituent effects on phi-related (3)J couplings to be within experimental uncertainty because main-chain topologies are identical in most amino-acid types, except for marginal effects in glycine and proline. However, effects in excess of standard errors in (3)J(phi) measurements are anticipated from second-sphere substituent variation. Regarding amino-acid side chains, first-sphere substituent effects on chi(1)-related (3)J couplings were previously found pivotal to accurate torsion-angle interpretation. Taking additional second-sphere effects on (3)J(chi(1)) into account is here demonstrated further to improve biomolecular structure analysis.  相似文献   

18.
PISEMO, a separated local field experiment that can be performed with either direct (15)N (or (13)C) detection or indirect (1)H detection, is demonstrated on a single crystal of a model peptide. The (1)H signals modulated by (1)H-(15)N heteronuclear dipole-dipole couplings are observed stroboscopically in the windows of the multiple-pulse sequence used to attenuate (1)H-(1)H homonuclear dipole-dipole couplings. (1)H-detection yields spectra with about 2.5 times the signal to noise ratio observed with (15)N-detection under equivalent conditions. Resolution in both the (15)N chemical shift and (1)H-(15)N heteronuclear dipole-dipole coupling dimensions is similar to that observed with PISEMA, however, since only on-resonance pulses are utilized, the bandwidth is better.  相似文献   

19.
Two-dimensional pulse sequences for the determination of heteronuclear long-range coupling constants are presented. The sequences are based on the HMQC/HMBC or HSQC technique with subsequent optional homonuclear I-spin transfer. However, they yield tilted cross-peak patterns displaying antiphase heteronuclear coupling constants in the projections of both dimensions, which allow accurate determination of the couplings even in cases where the linewidth is of comparable magnitude. Two characteristic pulse-sequence elements were implemented to shape theF1domain: the first element allows an arbitrary scaling of the heteronuclear coupling splittings relative to S-spin chemical-shift differences, whereas the second element achieves homonuclear broadband decoupling among the I spins in the HMQC/HMBC experiments and thus allows purely absorptive representations of such spectra. In comparison with established (ω1) X-half-filtered TOCSY spectra, the signal dispersion inF1is significantly improved and largely under experimental control. Furthermore, heteronuclear couplings of (I1, S) pairs where S is either quaternary or carries one or more I spins that do not belong to the same I-coupling network as I1can also be measured. The implementation of pulsed field gradients results in good suppression of spectral artifacts.  相似文献   

20.
An in-depth account of the effects of homonuclear couplings and multiple heteronuclear couplings is given for a recently published technique for (1)H--(13)C dipolar correlation in solids under very fast MAS, where the heteronuclear dipolar coupling is recoupled by means of REDOR pi-pulse trains. The method bears similarities to well-known solution-state NMR techniques, which form the framework of a heteronuclear multiple-quantum experiment. The so-called recoupled polarization-transfer (REPT) technique is versatile in that rotor-synchronized (1)H--(13)C shift correlation spectra can be recorded. In addition, weak heteronuclear dipolar coupling constants can be extracted by means of spinning sideband analysis in the indirect dimension of the experiment. These sidebands are generated by rotor encoding of the reconversion Hamiltonian. We present generalized variants of the initially described heteronuclear multiple-quantum correlation (HMQC) experiment, which are better suited for certain applications. Using these techniques, measurements on model compounds with (13)C in natural abundance, as well as simulations, confirm the very weak effect of (1)H--(1)H homonuclear couplings on the spectra recorded with spinning frequencies of 25--30 kHz. The effect of remote heteronuclear couplings on the spinning-sideband patterns of CH(n) groups is discussed, and (13)C spectral editing of rigid organic solids is shown to be practicable with these techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号