首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification and monitoring of gaseous species released during thermal decomposition of pure thiourea, (NH2)2C=S in argon, helium and air atmosphere have been carried out by both online coupled TG-FTIR and simultaneous TG/DTA-MS apparatuses manufactured by TA Instruments (USA). In both inert atmospheres and air between 182 and 240°C the main gaseous products of thiourea are ammonia (NH3) and carbon disulfide (CS2), whilst in flowing air sulphur dioxide (SO2) and carbonyl sulphide (COS) as gas phase oxidation products of CS2, and in addition hydrogen cyanide (HCN) also occur, which are detected by both FTIR spectroscopic and mass spectrometric EGA methods. Some evolution of isothiocyanic acid (HNCS) and cyanamide (NH2CN) vapours have also observed mainly by EGA-FTIR, and largely depending on the experimental conditions. HNCS is hardly identified by mass spectrometry. Any evolution of H2S has not been detected at any stage of thiourea degradation by either of the two methods. The exothermic heat effect of gas phase oxidation process of CS2 partially compensates the endothermicity of the corresponding degradation step producing CS2.  相似文献   

2.
Thiourea formaldehyde resin (TFR) has been synthesized by condensation of thiourea and formaldehyde in acidic medium and its thermal degradation has been investigated using TG-FTIR-MS technique during pyrolysis and combustion. The results revealed that the thermal decomposition of TFR occurs in three steps assigned to drying of the sample, fast thermal decomposition of polymers, and further cracking. The similar TG and DTG characteristics were found for the first two stages during pyrolysis and combustion. The combustion process was almost finished at 680?°C, while during pyrolysis a total mass loss of 93 wt% is found at 950?°C. The release of volatile products during pyrolysis are NH3, CS2, CO, HCN, HNCS, and NH2CN. The main products in the second stage are NH3 CO2, CS2, SO2, and H2O during combustion. In the next stage, the combustion products mentioned above keep on increasing, but some new volatiles such as HCN, COS etc., are identified. Among the above volatiles, CO2 is the dominant gaseous product in the whole combustion process. It is found that the thermal degradation during pyrolysis of TFR produced more hazardous gases like HCN, NH3, and CO when compared with combustion in similar conditions.  相似文献   

3.
Thermal decomposition of an amorphous precursor for S-doped titania (TiO2) nanopowders, prepared by controlled sol–gel hydrolysis–condensation of titanium(IV) tetraethoxide and thiourea in aqueous ethanol, has been studied up to 800 °C in flowing air. Simultaneous thermogravimetric and differential thermal analysis coupled online with quadrupole mass spectrometer (TG/DTA-MS) and FTIR spectrometric gas cell (TG-FTIR) have been applied for analysis of released gases (EGA) and their evolution dynamics in order to explore and simulate thermal annealing processes of fabrication techniques of the aimed S:TiO2 photocatalysts with photocatalytic activities under visible light. The precursor sample prepared with thiourea, released first water endothermically from room temperature to 190 °C, carbonyl sulfide (COS) from 120 to 240 °C in two stages, ammonia (NH3) from 170 to 350 °C in three steps, and organic mater (probably ether and ethylene) between 140 and 230 °C. The evolution of CO2, H2O and SO2, as oxidation products, occurs between 180 and 240 °C, accompanied by exothermic DTA peaks at 190 and 235 °C. Some small mass gain occurs before the following exothermic heat effect at 500 °C, which is probably due to the simultaneous burning out of residual carbonaceous and sulphureous species, and transformation of amorphous titania into anatase. The oxidative process is accompanied by evolution of CO2 and SO2. Anatase, which formed also in the exothermic peak at 500 °C, mainly keeps its structure, since only 10% of rutile formation is detected below or at 800 °C by XRD. Meanwhile, from 500 °C, a final burning off organics is also indicated by continuous CO2 evolution and small exothermic effects.  相似文献   

4.
Thermal decomposition of a mixed valence copper salt, Na4[Cu(NH3)4][Cu(S2O3)2]2·0.5NH3 (1) prepared from pentahydrates of sodium thiosulfate and copper sulphate of various molar ratios in 1:1 v/v aqueous ammonia solution, has been studied up to 1,000 °C in flowing air by simultaneous thermogravimetric and differential thermal analysis coupled online with quadrupole mass spectrometer (TG/DTA-MS) and FTIR spectrometric gas cell (TG-FTIR), in comparison. Compound 1 releases first but very slowly some of the included ammonia till 170 °C, then simultaneously ammonia (NH3) and sulphur dioxide (SO2) from 175 to 225 °C, whilst the evolution of SO2 from thiosulfate ligands continues in several overlapping stages until 410 °C, and is escorted by explicit exothermic heat effects at around 237, 260, 358 and 410 °C. The former two exothermic DTA-peaks correspond to the simultaneous degradation and air oxidation processes of excess thiosulfate anions not reacted by formation of copper sulfides (both digenite, Cu1.8S and covellite, CuS, checked by XRD) and sodium sulfate, while the last two exothermic peaks are accompanied also by considerable mass gains, as the result of two-step oxidation of copper sulfides into various oxosulfates. The mass increase continues further on until 580 °C, when the sample mass begins to decrease slowly, as a continuous decomposition of the intermediate copper oxosulfates, indicated also by re-evolution of SO2. At 1,000 °C, a residual mass value of 64.3% represents a stoichiometric formation of CuIIO and anhydrous Na2SO4.  相似文献   

5.
Thermal decomposition of ammonium paratungstate tetrahydrate, (NH4)10[H2W12O42]·4H2O has been followed by simultaneous TG/DTA and online evolved gas analysis (TG/DTA-MS) in flowing 10% H2/Ar directly up to 900°C. Solid intermediate products have been structurally evaluated by FTIR spectroscopy and powder X-ray diffraction (XRD). A previously unexplained exothermic heat effect has been detected at 700–750°C. On the basis of TG/DTA as well as H2O and NH3 evolution curves and XRD patterns, it has been assigned to the formation and crystallization heat of γ-tungsten-oxide (WO2.72/W18O49) from β-tungsten-oxide (WO2.9/W20O58) and residual ammonium tungsten bronze.  相似文献   

6.
Thermal decomposition of precursors for In2S3 thin films obtained by drying aqueous solutions of InCl3 and SC(NH2)2 at the In:S molar ratios of 1:3 (1) and 1:6 (2) was monitored by simultaneous TG/DTA/EGA-FTIR measurements in the dynamic 80%Ar + 20%O2 atmosphere. XRD and FTIR were used to identify the dried precursors and products of the thermal decomposition. The precursors 1 and 2 are complex compounds, while in 2 free SC(NH2)2 is also present. The thermal degradation of 1 and 2 in the temperature range of 30–900 °C consists of four mass loss steps, the total mass loss being 89.1 and 78.5%, respectively. According to XRD, In2S3 is formed below 300 °C, crystalline In2.24(NCN)3 is detected only in 1 above 520 °C and In2O3 is the final decomposition product at 900 °C. The gaseous species evolved include CS2, NH3, H2NCN, HNCS, which upon oxidation yield also COS, SO2, HCN and CO2.  相似文献   

7.
Two combinations of simultaneous thermoanalytical techniques (TG+DTA and TG+EGA) were used to study the thermal decomposition of the title compound in order to gain a better insight into the spray pyrolytic processes leading to Cu2-xS and CuInS2 thin films. After dehydration a complex sequence of reactions starts above 220°C leading through several intermediates to the formation of CuO in air at 1000°C. In an inert atmosphere Cu2S is formed which in helium above 800°C partly decomposes to Cu. XRD and FTIR were used to identify the intermediate solid phases which in air included CuCl, Cu2OSO4, Cu2OCl2 and CuSO4. EGA-FTIR confirmed the complex reaction mechanism with NH3, HCl, H2O, COS, CO2 and some HCN as main gaseous products under oxidative conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Thermogravimetry (TG), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were used to study the thermal behaviour of the organic matter in the natural phosphate and its concentrate kerogen from the Moroccan deposit. The TG analysis showed that both the investigated samples exhibited a one-step thermal oxidation in the main mass loss area, between 160 and 540°C, attributed to the hydrocarbon material. When DSC analyses of oxidation as well as pyrolysis yielded two evolutionary stages of the hydrocarbon in this temperature range : the first one at 160-360°C and the second one above 360°C. Pyrolytic kerogen decomposition was monitored by measuring changes in the principal FTIR organic bands. The results showed, in the first stage, the progressive decrease of signals due to CH2 and CH3 vibrations as well as the carbonyl and carboxylic bands, and their subsequent disappearance at 300°C. In the second stage above 400°C, the signal due to the aromatic components (1600 cm-1) appeared but decreased with increasing temperature up to 540°C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Thermal decomposition of precursor xerogels for TiO2, obtained by gelling of acetylacetonate-modified titanium(IV) tetraisopropoxide (prepared at Ti-alkoxide:acetylacetone molar ratios of 1:1 (Ti-1) and 1:2 (Ti-2)) in boiling 2-methoxyethanol, was monitored by simultaneous TG/DTA/EGA-MS and EGA-FTIR measurements. Thermal degradation processes of Ti-1 and Ti-2 in the temperature range of 30–700°C consist of six mass loss steps, the total mass loss being 46.3% and 54.4%, respectively. EGA by FTIR and MS revealed release of H2O below 120°C; followed by evolution of acetone and acetic acid between approximately 100 and 320°C, and that of CO2 up to 560°C. Acetylacetone is evolved to a significant extent from sample Ti-2 at 120–200°C.  相似文献   

10.
The indium complex, mer-trichlorotris(thiourea)-indium(III) (In(tu)3Cl3, 1), crystallized from aqueous solution of InCl3 and SC(NH2)2 (tu) with molar ratio of 1:3, is a single-source precursor for In2S3 films by chemical spray pyrolysis. The structural model of the triclinic crystal 1 (space group P-1 with a = 8.4842(2) Å, b = 10.5174(2) Å, c = 13.1767(2) Å, α = 111.1870(10)°, β = 98.0870(10)°, γ = 97.889(2)°) has been improved by single crystal X-ray diffraction analysis through successful separation of the disordered positions of the asymmetric complex molecule situated on the inversion centre into two spatial arrangements. Thermal decomposition of 1 occurs with very similar mass loss courses till 400 °C in both nitrogen and air, anyhow the DTA curve indicates a gas-phase oxidation with an additional exothermic heat effect at 255 °C in air. Partial or more advanced oxidation of the initially evolved CS2 has taken place in both atmospheres, as its oxidation products, SO2, COS, CO2 are accompanied by the release of NH3, HCl in temperature range of 205–275 °C, while H2NCN and HCN evolve in air. In the third mass loss step, in the temperature interval of 405–750 °C in nitrogen and 405–700 °C in air, two processes, evaporation and oxidation of the solid residues are competing with each other, resulting in final decomposition product of 1 in air In2O3, while also some In2O3 in inert atmosphere beyond the main phase of In2S3 where, in addition considerable extent of loss of indium occurs, probably through volatile dimeric indium chloride species, which could not be detected either by EGA-MS or EGA-FTIR systems of ours. Nevertheless, evolution of HNCS is confirmed by EGA-FTIR, and release of CO2, H2NCN, SO2, and a little HCl is detected at temperatures above 450 °C in both atmospheres.  相似文献   

11.
Palygorskite (PG)-supported manganese oxide catalysts (MnOx/PG) were prepared for the selective catalytic reduction (SCR) of NO with ammonia in the presence of SO2 at low temperature. The influence of gaseous SO2 on the performance of the catalyst was studied by means of specific surface area (Brunauer-Emmett-Teller, BET) analysis, scanning electron microscopy (SEM), thermogravimetric (TG) analysis, temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The results showed that the SCR activity of Mn10/PG was significantly inhibited by gaseous SO2 at temperatures below 300°C. However, the SCR activity of Mn10/PG was markedly promoted by SO2 in a higher temperature range of 300°C to 500°C. The sulphating of surface active species (MnOx) was suggested to inhibit the oxidation of NH3 to NO leading to enhancement of the SCR activity at a higher temperature range of 300°C to 500°C and decrease in the SCR activity at temperatures below 300°C.  相似文献   

12.
The thermal reactions in the mixtures of hydroxylapatite or fluorapatite and (NH4)2SO4up to 500°C were studied with the purpose of elaborating the conditions of obtaining calcium–ammonium cyclophosphate that could be used as fertilizer. Thermal analysis with a simultaneous FTIR analysis of the evolved gases as well as the analyses of chemical and phase composition of solid products were performed. The thermal changes in the mixtures could be divided into three steps: (1) decomposition of (NH4)2SO4and reactions of apatite with these products at 250–420°C, (2) calcium ammonium polyphosphate formation at 290–450°C, and (3) reaction of CaSO4with CaNH4P3O9at 320–500°C. Higher concentrations of NH3in the gas phase promote the formation of CaNH4P3O9and increase its stability. Calcination at temperatures above 350°C causes decomposition of CaNH4P3O9with a decrease in the content of water-soluble phosphorus and evolvement of SO2.  相似文献   

13.
Catalytic pyrolysis of ethylene was carried out at 700 °C in the presence of vapors of H2O, EtOH, NH4OH, PCl3, (MeO)3P, Me2SO4, (MeO)3B, and HCl. The composition of solid pyrolysis products was studied using the elemental analysis, X-ray diffraction analysis, and electron microscopy. The composition of the gaseous pyrolysis products was studied using mass spectrometry. The processes in the gas phase were characterized, and the relationship between conditions of ethylene pyrolysis and the structure of formed carbon nanofibers was revealed. The introduction of gaseous additives has a substantial effect on the formation, growth, and structure of the carbon nanofibers formed.  相似文献   

14.
Hydrated isostructural 1:3 complexes of copper(I) chloride and bromide with thiourea were synthesised and their thermal decomposition studied by simultaneous TG/DTA complemented by ex situ FTIR and XRD studies. The decomposition of Cu(tu)3Cl·H2O is initiated by dehydration around 100°C, followed by a total multi-step degradation of the structure in the temperature range of 200–600°C. The counter ion has some influence on the temperatures and composition of the solid residue. The results were compared with those obtained with the 1:1 complex Cu(tu)Cl·1/2H2O. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Thermal decomposition of the title compound, Zn(tu)2Cl2 (tu=thiourea), was studied up to 1200°C in dynamic inert (N2) and oxidative (air) atmospheres using simultaneous TG/DTA techniques. In addition, XRD and IR were employed ex situ to resolve the reaction mechanism and products. Cubic ZnS (sphalerite) is formed below 300°C in both atmospheres and is observed until 760°C, whereafter it transforms in nitrogen to the hexagonal ZnS (wurtzite). EGA by FTIR revealed the complexity of the decomposition reactions involving also the evolution of H2NCN, which reacts to form hexagonal ZnCN2 as revealed by an XRD analysis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The aim of this study has been to gain a fundamental understanding of the mechanisms governing thermal degradation of luminescent poly(3-hydroxybutyrate) (PHB). PHB was doped with diaquatris(thenoyltrifluoroacetonate) europium(III) complex, [Eu(tta)3(H2O)2], and different luminescent systems were obtained. The thermal-stability of the luminescent films was discussed and the products of decomposition were analyzed. Thermal degradation of PHB:Eu(tta)3 x % systems (x = 0, 1, 5, 10, and 15 %) was elucidated by means of thermogravimetric analysis (TG), the thermal-stability decreases with the increase of europium complex concentration. The PHB polymer decomposed with evolution of carbon dioxide and 2-butenoic acid molecules. The TG–FTIR results, of the gaseous degradation products of PHB in nitrogen atmosphere, indicated that the polymer is stable at temperatures up to 200 °C. Polymer matrix at concentrations above 5 % decomposed with evolution of water molecules among the other gaseous products, which implied the presence of a hydrated complex in the system. The luminescent films showed more flexibility due to a loss in crystallinity, which suggested a potential usefulness in technical applications.  相似文献   

17.
Detailed thermal analysis of manganese(II) complexes with a-amino acids were carried out. The thermal degradation is multi-stage. Dehydration of complexes is the first mass loss step. Anhydrous compounds are unstable and decompose to Mn3O4 in air or to MnO in inert atmosphere. The intermediate solid products were identified by TG method and TG/FTIR combined technique. Among others solid residues, the presence of MnSO4, MnBr2 and Mn(CH3COO)Cl was found. In the gaseous products of decomposition of organic ligand H2O, NH3, CO2, CO, aromatic and non-aromatic hydrocarbons and very probably cyanoacetic acid and dimethyl sulfide occurred. Inorganic ions, i.e. Cl-, Br-or So4 2-remain in the solid products of decomposition or are lost as HCl, HBr or SO2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Thermal decomposition of an amorphous precursor for sulfur-doped titania (S:TiO2) nanopowders, prepared by controlled sol–gel hydrolysis-condensation of titanium(IV) tetrabutoxide and thiourea in aqueous butanol, has been studied in situ up to 850 °C in flowing air by simultaneous thermogravimetric and differential thermal analysis coupled online with quadrupole mass spectrometer (TG/DTA–MS) and FTIR spectrometric gas cell (TG–FTIR) for analysis of gases and their evolution dynamics in order to explore and simulate thermal annealing processes of fabrication techniques aimed S:TiO2 photocatalysts with photocatalytic activities under visible light.The studied S-doped precursor's decomposition course remembers to that of non-doped xerogel from Ti(IV)-n-butoxide, which seems to retard a considerable amount of organics in the solid phase even at high temperature, probably in polymeric forms, proven by evolution of CO2 in several temperature regions of decomposition stages. The incorporation form of thiourea in the original xerogel seems to be chemically bounded, resulting lower decomposition temperature than that of pure thiourea, and producing evolution of carbonyl sulfide (COS) already between 120 and 190 °C. Nevertheless, evolution of SO2, and that of CO2 is also observed above 500 °C by both EGA detection methods. The latter observation implies that the blackish grey samples obtained even at 750 °C might be simultaneously S- and C-doped ones.  相似文献   

19.
Fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomer [RF-(DOBAA)n-RF]/silica gel nanocomposite, which was prepared by reaction of the corresponding fluorinated oligomer with tetraethoxysilane and silica gel nanoparticles under alkaline conditions, exhibited no weight loss even at 800 °C equal to the original silica gel, although the corresponding parent RF-(DOBAA)n-RF oligomer was completely degraded at 600 °C. Thermogravimetric analyses/mass spectra of fluorinated nanocomposite showed that this nanocomposite decomposed around 280 °C to afford CO2 and H2O as the major evolved gaseous products including some minor fluoro- and hydrocarbons. X-ray photoelectron spectroscopy analyses also showed that the contents of C, F, and Si atoms in RF-(DOBAA)n-RF/SiO2 nanocomposite after the calcination at 800 °C were similar to those before the calcination. These findings suggest that the evolved gaseous products should be encapsulated quantitatively into nanometer-size-controlled silica matrices to give the fluorinated silica gel nanocomposite with no weight loss even at 800 °C equal to the original silica gel.  相似文献   

20.
The structure and morphology of ammonium metatungstate (AMT), (NH4)6[H2W12O40]?4H2O, and its thermal decomposition in air and nitrogen atmospheres were investigated by SEM, FTIR, XRD, and TG/DTA-MS. The cell parameters of the AMT sample were determined and refined with a full profile fit. The thermal decomposition of AMT involved several steps in inert atmosphere: (i) release of crystal water between 25 and 200 °C resulting in dehydrated AMT, (ii) formation of an amorphous phase between 200 and 380 °C, (iii) from which hexagonal WO3 formed between 380 and 500 °C, and (iv) which then transformed into the more stable m-WO3 between 500 and 600 °C. As a difference in air, the as-formed NH3 ignited with an exothermic heat effect, and nitrous oxides formed as combustion products. The thermal behavior of AMT was similar to ammonium paratungstate (APT), (NH4)10[H2W12O42]?4H2O, the only main difference being the lack of dry NH3 evolution between 170 and 240 °C in the case of AMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号