首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Here we demonstrate for the first time the preparation of a triflic acid (TFA)‐functionalized mesoporous nanocage with tunable pore diameters by the wet impregnation method. The obtained materials have been unambiguously characterized by XRD, N2 adsorption, FTIR spectroscopy, and NH3 temperature‐programmed desorption (TPD). From the characterization results, it has been found that the TFA molecules are firmly anchored on the surface of the mesoporous supports without affecting their acidity. We also demonstrate the effect of the pore and cage diameter of the KIT‐5 supports on the loading of TFA molecules inside the pore channels. It has been found that the total acidity of the materials increases with an increase in the TFA loading on the support, whereas the acidity of the materials decreases with an increase in the pore diameter of the support. The acidity of the TFA‐functionalized mesoporous nanocages is much higher than that of the zeolites and metal‐substituted mesoporous acidic catalysts. The TFA‐functionalized materials have also been employed as the catalysts for the synthesis of 7‐hydroxy‐4‐methylcoumarin by means of the Pechmann reaction under solvent‐free conditions. It has been found that the catalytic activity of the TFA‐functionalized KIT‐5 is much higher than that of zeolites and metal‐substituted mesoporous catalytic materials in the synthesis of coumarin derivatives. The stability of the catalyst is extremely good and can be reused several times without much loss of activity in the above reaction.  相似文献   

2.
不同方法制备的介孔Ni/MgO催化剂上水蒸气重整苯酚制氢   总被引:1,自引:0,他引:1  
利用浸渍法和水热共沉淀法两种方法,制备了介孔Ni/MgO催化剂,用于水蒸气重整生物质油模型物苯酚制取氢气;利用XRD、N2吸附/脱附、H2-TPR、TEM以及TG等手段对催化剂进行了表征。结果表明,以介孔MgO为载体,采用浸渍法制备的介孔NiO/MgO固溶体,具有较高的比表面积(60.6m2/g)以及较大的孔径(10.1nm)。与水热共沉淀法制备的催化剂相比,浸渍法制备的NiO/MgO前驱体经还原后的所得到介孔Ni/MgO催化剂Ni颗粒较小(5.0-6.0nm),分布均匀,具有较高的分散度(19.44%)。较大的比表面积能有效地促进活性金属颗粒的分散,而介孔有利于反应物和产物在催化剂孔道中的扩散。因此,该Ni/MgO催化剂在水蒸气重整苯酚制氢反应中具有较高的催化活性、稳定性和优异的抗积炭能力。  相似文献   

3.
Mesoporous silica supported Cs_(2.5)H_(0.5)PW_(12)O_(40) catalysts were prepared by impregnation method,and several silica supports with different pore size were utilized.N_2 adsorption,XRD and ICP-AES techniques were utilized to characterize the silica supports and catalysts.XRD results showed that the dispersion of Cs_(2.5)H_(0.5)PW_(12) was better for the silica support with larger pore size.The catalytic activity results showed that the pore size played important role on the catalyst activity and the...  相似文献   

4.
We explored melt infiltration of mesoporous silica supports to prepare supported metal catalysts with high loadings and controllable particle sizes. Melting of Co(NO(3))(2)·6H(2)O in the presence of silica supports was studied in situ with differential scanning calorimetry. The melting point depression of the intraporous phase was used to quantify the degree of pore loading after infiltration. Maximum pore-fillings corresponded to 70-80% of filled pore volume, if the intraporous phase was considered to be crystalline Co(NO(3))(2)·6H(2)O. However, diffraction was absent in XRD both from the ordered mesopores at low scattering angles and from crystalline cobalt nitrate phases at high angles. Hence, an amorphous, lower density, intraporous Co(NO(3))(2)·6H(2)O phase was proposed to fill the pores completely. Equilibration at 60 °C in a closed vessel was essential for successful melt infiltration. In an open crucible, dehydration of the precursor prior to infiltration inhibited homogeneous filling of support particles. The dispersion and distribution of Co(3)O(4) after calcination could be controlled using the same toolbox as for preparation via solution impregnation: confinement and the calcination gas atmosphere. Using ordered mesoporous silica supports as well as an industrial silica gel support, catalysts with Co metal loadings in the range of 10-22 wt % were prepared. The Co(3)O(4) crystallite sizes ranged from 4 to 10 nm and scaled with the support pore diameters. By calcination in N(2), pluglike nanoparticles were obtained that formed aggregates over several pore widths, while calcination in 1% NO/N(2) led to the formation of smaller individual nanoparticles. After reduction, the Co/SiO(2) catalysts showed high activity for the Fischer-Tropsch synthesis, illustrating the applicability of melt infiltration for supported catalyst preparation.  相似文献   

5.
Ordered mesoporous carbon (OMC) supported gold nanoparticles of size 3–4 nm having uniform dispersion were synthesized by sol‐immobilization method. OMCs such as CMK‐3 and NCCR‐56 with high surface area and uniform pore size were obtained, respectively, using ordered mesoporous silicas such as SBA‐15 and IITM‐56 as hard templates, respectively. The resulting OMC supported monodispersed nano‐gold, i. e., Au/CMK‐3 and Au/NCCR‐56, exhibited excellent performance as mild‐oxidizing catalysts for oxidation of glycerol with high hydrothermal stability. Further, unlike activated carbon supported nano‐gold catalysts (Au/AC), the OMC supported nano‐gold catalysts, i. e., Au/CMK‐3 and Au/NCCR‐56, show no aggregation of active species even after recycling. Thus, in the case of Au/CMK‐3 and Au/NCCR‐56, both the fresh and regenerated catalysts showed excellent performane for the chosen reaction owing to an enhanced textural integrity of the catalysts and that with remarkable selectivity towards glyceric acid. The significance of the OMC supports in maintaining the dispersion of gold nanoparticles is explicit from this study, and that the activity of Au/AC catalyst is considerably decreased (~50 %) upon recycling as a result of agglomeration of the active gold nanoparticles over the disordered amorphous carbon matrix.  相似文献   

6.
Mesoporous materials have attracted considerable attention for use as a catalyst or a catalyst support due to their remarkable textural properties such as high surface area and large pore volume with a narrow pore size distribution. Many efforts have been made to design mesoporous materials for use in heterogeneous catalyst systems. Recent progress and results regarding the preparation of nickel-mesoporous materials and their application to the hydrodechlorination of chlorinated organic compounds were discussed in this review. Mesoporous materials were used as a support for nickel catalyst or a nickel-incorporated mesoporous catalytic material in this work. Two research areas were described and discussed in this review. One is the preparation of mesoporous alumina-supported nickel catalysts and their application to the hydrodechlorination of 1,2-dichloropropane and o-dichlorobenzene. The other is the preparation of mesoporous silica-supported nickel catalysts and their application to the hydrodechlorination of 1,1,2-trichloroethane and chlorobenzene.  相似文献   

7.
Cellulose-derived sorbitol is emerging as a feasible and renewable feedstock for the production of value-added chemicals. Highly active and stable catalyst is essential for sorbitol hydrogenolysis. Ordered mesoporous M–xNiyCeAl catalysts with different loadings of nickel and cerium species were successfully synthesized via one-pot evaporation-induced self-assembly strategy (EISA) and their catalytic performance were tested in the hydrogenolysis of sorbitol. The physical chemical properties for the catalysts were characterized by XRD, N2 physisorption, H2-TPR, H2 impulse chemisorption, ICP and TEM techniques. The results showed that the ordered mesopores with uniform pore sizes can be obtained and the Ni nanoparticles around 6 nm in size were homogeneously dispersed in the mesopore channels. A little amount of cerium species introduced would be beneficial to their textural properties resulting in higher Ni dispersion, metal area and smaller size of Ni nanoparticles. The M–10Ni2CeAl catalyst with Ni and Ce loading of 10.9 and 6.3 wt % shows better catalytic performance than other catalysts, and the yield of 1,2-PG and EG can reach 56.9% at 493 K and 6 MPa pressure for 8 h after repeating reactions for 12 times without obvious deterioration of physical and chemical properties. Ordered mesoporous M–NiCeAl catalysts are active and stable in sorbitol hydrogenolysis.  相似文献   

8.
乐洪咏  郑波  乐英红  张雪峥  华伟明  高滋 《中国化学》2002,20(11):1192-1198
IntroductionEnormousstudyhasbeendevotedtoM4 1S ,thefirstfamilyofmesoporousmolecularsievesreportedin1992 ,1,2 includingtheirmodificationsandapplicationsincatalysis .Theattractivepropertiesofthesematerialsaretheirhighspecificsurfacearea (>10 0 0m2 /g) ,well de finedstr…  相似文献   

9.
 以HMS,MCM-41,AlHMS和ZrO2/HMS等中孔分子筛为载体,采用孔体积浸渍法制备了系列负载型钴催化剂.XRD测定结果表明,Co氧化物完全分散于分子筛内表面,载体仍保持中孔分子筛的特征;低温N2吸附测定结果表明,表面负载金属钴后,分子筛的比表面积和孔体积下降,孔径减小,孔壁增厚.比较了不同中孔分子筛负载Co催化剂在F-T反应中的催化性能,以短程六角对称的HMS为载体,有利于F-T反应中的链增长,烃类产物主要为微晶蜡;以ZrO2/HMS为载体可抑制CH4的生成,提高C5+的选择性.  相似文献   

10.
The condensation reaction of 1,2-diketones and o-phenylenediamines was investigated in the presence of nano-sized mesoporous silica (MCM-41) supported 12-tungstophosphoric acid (TPA) as solid acid catalyst. Nano-sized MCM-41 was synthesized and the catalysts with different loading amounts of TPA (5–15 wt.%) were prepared and characterized by XRD, FT-IR and SEM techniques. The results confirm good dispersion of TPA on the solid support. The catalyst is reusable many times without loss in its activity.  相似文献   

11.
不同孔道结构的氧化硅负载钒氧化物催化丙烷氧化脱氢   总被引:1,自引:0,他引:1  
采用固定床微型反应装置,结合催化剂的原位电子自旋共振光谱、程序升温表面反应和紫外漫反射光谱等技术,研究了丙烷氧化脱氢的介孔氧化硅负载钒氧化物催化剂的性能和表面氧物种的状态及其反应性.结果表明,催化剂载体孔结构是影响钒氧物种分散状态乃至催化性能的一个重要因素.SBA-15负载钒氧化物催化剂因具有较大的比表面积和较大的孔径,不仅具有较高的丙烷氧化脱氢催化活性,而且具有较高的丙烯选择性.复合型钒氧化物催化剂表面与V离子相连的晶格氧物种是丙烷氧化脱氢牛成内烯的主要活性物种,载体表面高度分散的钒氧物种具有较高的丙烷氧化脱氢催化活性.负载型钒氧化物催化剂晶格氧物种是丙烷氧化脱氢转化为丙稀的主要活性物种,CO_2分子可以再生钒氧化物催化剂的晶格氧物种,同时它对丙烯的深度氧化作用较弱,因此在负载型钒氧化物催化剂上CO_2氧化丙烷可高选择性地生成丙烯.  相似文献   

12.
镍负载量对乙醇水蒸气重整制氢催化性能和催化剂的影响   总被引:2,自引:0,他引:2  
采用稳态实验对镍负载量对Ni/MgO催化剂在乙醇水蒸气重整反应的影响进行了研究。结果表明,在101.3kPa下,镍负载量越高,催化剂的活性越高。对于催化剂的选择性,存在一个最佳镍负载量为10%Ni/MgO。按选择性从大到小排序,不同镍负载量的催化剂为:10Ni/MgO>15Ni/MgO>12.5Ni/MgO>7.5Ni/MgO≈5Ni/MgO。热分析表明,焙烧过程中不同镍负载量的催化剂镍前体与载体前体之间发生的相互作用不同。XRD和TPR 表征结果显示,催化剂的晶体结构和还原特性也与催化剂上镍的负载量有关。焙烧过程中样品10Ni/MgO上镍前体与载体前体发生了两种相互作用, 并且其氧化态与其他催化剂相比具有特殊的结构和还原性。说明催化剂的选择性不仅受活性相Ni的影响而且受Ni活性相周围环境的影响。  相似文献   

13.
A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.  相似文献   

14.
New routes for the preparation of highly active TiO(2)-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, (63)Cu nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO(2) catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO(2) at 120 °C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO(2) at 140 °C, corresponding to an initial reaction rate of 104 mmol g(cat) (-1) s(-1). The activation energy on the Cu/mesoporous TiO(2) catalyst was found to be (144±5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123±3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO(2) support (75±2 kJ mol(-1)).  相似文献   

15.
To fabricate high-density cobalt-based catalysts, we first synthesized SiO2/C composites via a hydrothermal method and removed C and SiO2 by two different methods, respectively. The as-prepared SiO2 and C supports then reacted with cobalt acetylacetonate and N,N-dimethylformamide(DMF) under hydrothermal conditions to prepare SiO2/Co and C/Co nanocomposite catalysts. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), transmission electron microscopy(TEM), inductively coupled plasma mass spectrometry(ICP), energy dispersive X-ray fluoresence spectrometer(EDX), and nitrogen adsorption. It was found that hexagonal cobalt nanocrystals were successfully integrated with the mesoporous silica or carbon nanotube supports. SEM and TEM results show that SiO2/Co composites with a hollow/mesoporous sphere structure and C/Co composites with a tubular structure have been successfully synthesized. Both composite samples show superparamagnetism exhibiting an S-type hysteresis loop, which originated from the cobalt nanoparticles in the samples. Nitrogen adsorption/desorption curves suggest that the SiO2 and C supports have well-developed pore structures and large specific surface areas, and the loading and good dispersity of cobalt nanoparticles on the supports were proven by ICP and EDX. Moreover, the samples exhibited good and stable catalytic activity, demonstrating that the two composites are suitable catalysts for Fischer-Tropsch CO2 hydrogenation.  相似文献   

16.
Catalytic hydrodeoxygenation (HDO) of anisole, a methoxy-rich lignin-derived bio-oil model compound, was carried out over a series of Ni-containing (5, 10, 20, and 30 wt%) catalysts with commercial silica and ordered mesoporous silica SBA-15 as support. Both supports and catalysts were characterized by N2 adsorption–desorption isotherms, X-ray diffraction, CO chemisorption, and transmission electron microscopy (TEM). Catalytic reaction was performed at 250 °C and 10 bar H2 pressure. Depending on the catalyst support used and the content of active metal, the catalytic activity and product distribution changed drastically. Increase of the nickel loading resulted in increased anisole conversion and C6 hydrocarbon (benzene and cyclohexane) yield. However, loading more Ni than 20 wt% resulted in a decrease of both conversion and C6 yield due to agglomeration of Ni particles. In addition, Ni/SBA-15 samples exhibited much stronger catalytic activity and selectivity toward C6 hydrocarbon products compared with Ni/silica catalysts. The differences in catalytic activity among these catalysts can be attributed to the effect of the pore size and pore structure of mesoporous SBA-15. SBA-15 can accommodate more Ni species inside channels than conventional silica due to its high pore volume with uniform pore structure, leading to high HDO catalytic activity.  相似文献   

17.
We report here a thermal reduction method for preparing Ru catalysts supported on a carbon substrate. Mesoporous SBA-15 silica, surface-carbon-coated SBA-15, templated mesoporous carbon, activated carbon, and carbon black with different pore structures and compositions were employed as catalyst supports to explore the versatility of the thermal reduction method. Nitrogen adsorption, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, thermogravimetric analysis, and X-ray absorption near-edge structure techniques were used to characterize the samples. It was observed that carbon species that could thermally reduce Ru species at high temperatures played a vital role in the reduction process. Ru nanoparticles supported on various carbon-based substrates exhibited good dispersion with an appropriate particle size, high crystallinity, strong resistance against oxidative atmosphere, less leaching, lack of aggregation, and avoidance of pore blocking. As such, these catalysts display a remarkably high catalytic activity and stability in the hydrogenation of benzene and toluene (up to 3-24-fold compared with Ru catalysts prepared by traditional methods). It is believed that the excellent catalytic performance of the thermally reduced Ru nanoparticles is related to the intimate interfacial contact between the Ru nanoparticles and the carbon support.  相似文献   

18.
Single-walled carbon nanotubes (SWNTs) with a narrow diameter distribution are synthesized by thermal chemical vapor deposition (CVD) of methane over Fe/MgO catalyst on the basis of parametric study considering Fe loading, reaction temperature and time, methane concentration, and structure of a support material. We found that the porous MgO support gives the SWNTs with a narrow diameter distribution with the mean diameter and standard deviation of 0.93 and 0.06 nm, respectively, only when the Fe loading and reaction temperature are relatively low. The higher Fe loading and/or the higher reaction temperature enlarged the nanotube diameter, forming double-walled carbon nanotubes (DWNTs) in addition to SWNTs. This result indicates that only the diameter of Fe nanoparticles determines the growth of either SWNTs or DWNTs on the MgO support. The fluorescence and absorption spectra of the nanotube dispersion in D(2)O solution with sodium dodecyl sulfate (SDS) were studied to identify their chirality distribution. The fluorescence of the uniform-diameter SWNTs indicates the formation of the near armchair structures. On the other hand, the SWNTs synthesized over the catalyst with a high Fe loading, 3 wt %, showed a wide chirality distribution including the near zigzag structure. The synthesis of the SWNTs with a narrow diameter distribution could be applied to the selection of SWNTs with a specific chirality based on postsynthesis separation.  相似文献   

19.
负载Ni催化剂上低温甘油蒸汽重整制氢   总被引:1,自引:0,他引:1  
采用等体积浸渍法制备了Al2O3、CeO2、TiO2及MgO负载Ni催化剂,考察了它们对甘油蒸汽重整制氢反应的催化性能。采用X射线衍射、N2吸附、透射电镜及H2程序升温还原等方法对催化剂进行了表征。结果表明,载体对Ni催化剂的活性有显著影响。在400 ℃下Ni/CeO2的催化活性明显好于其他催化剂,活性次序为Ni/CeO2> Ni/Al2O3 > Ni/TiO2 ~ Ni/MgO。Ni/CeO2也具有好的稳定性,反应20 h未见活性下降,甘油转化率70%,氢气收率69.2%。这与CeO2的本性及其与活性组分的相互作用有关。Al2O3具有较大的比表面积与孔体积,有利于CO吸附及甲烷化反应的进行,使得Ni/Al2O3催化剂在较高温度下具有很高的甘油转化率85.7%,但H2选择性较差。由于MgO载体与活性组分强的相互作用而生成NiMgO2固溶体,导致Ni/MgO低温活性差。  相似文献   

20.
Here we demonstrate for the first time the encapsulation of a chiral oxazaborolidine complex in the 3D mesoporous channels of an amine functionalized KIT-6 material via covalent bonding through a post-synthetic approach. The physico-chemical properties of the pure and immobilized KIT-6 catalysts were obtained by various techniques such as XRD, nitrogen adsorption, HRSEM, UV-Vis diffuse reflectance spectroscopy, and FT-IR spectroscopy. It has been found that the structural stability of the KIT-6 was not affected even after the immobilization of a significant amount of chiral ligand inside the mesoporous channels of the support. However, the values of structural parameters such as the specific surface area and the specific pore volume of the KIT-6 support was significantly lower than the pure KIT-6 support. The chemical interaction between the chiral ligand inside the mesochannels and the KIT-6 support was also confirmed by UV-Vis and FT-IR spectroscopy. The chiral catalytic performance of the immobilized catalysts for the enantioselective reduction of aromatic prochiral ketones was demonstrated and the results were compared with chiral catalyst immobilized supports with uni-dimensional porous structures, such as MCM-41 and SBA-15. Among the catalysts studied, chiral catalyst immobilized KIT-6 showed the highest performance with a high product yield and a high enantioselectivity due to its 3D porous structure with two continuous and interpenetrating systems of chiral channels and an interwoven 3D cylindrical type pores of Ia3d symmetry. The catalyst also exhibited much better recycling capability than other chiral catalyst supported mesoporous materials used in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号