首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The increase of atmospheric carbon dioxide and the global warming due to its greenhouse effect resulted in worldwide concerns. On the other hand, carbon dioxide might be considered as a valuable and renewable carbon source. One approach to reduce carbon dioxide emissions could be its capture and recycle via transformation into chemicals using the technologies in C1 chemistry. Despite its great interest, there are difficulties in CO2 separation on the one hand, and thermodynamic stability of carbon dioxide molecule rendering its chemical activity low on the other hand. Carbon dioxide has been already used in petrochemical industries for production of limited chemicals such as urea. The utilization of carbon dioxide does not necessarily involve development of new processes, and in certain processes such as methanol synthesis and methane steam reforming, addition of CO2 into the feed results in its utilization and increases carbon efficiency. In other cases, modifications in catalyst and/or processes, or even new catalysts and processes, are necessary. In either case, catalysis plays a crucial role in carbon dioxide conversion and effective catalysts are required for commercial realization of the related processes. Technologies for CO2 utilization are emerging after many years of research and development efforts.  相似文献   

3.
4.
Using the reaction‐relevant two‐dimensional potential energy surface, an accurate reaction‐pathway mapping and ab inito molecular dynamics, it is shown that CO2 capture by P(tBu)3 and B(C6F5)3 species has many nearly degenerate reaction‐routes to take. The explanation of that is in the topography of the transition state (saddle) area. An ensemble of asynchronous reaction‐routes of CO2 binding is described in fine detail. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
New methodology for the alkylation of amines is an intriguing issue in both academia and industry. Recently, several groups reported the metal‐free B(C6F5)3‐catalyzed N‐alkylation of amines, but the mechanistic details of these important reactions are unclear. Herein, a computational study was performed to elucidate the mechanism of the N‐alkylation of amines with formic acid catalyzed by the Lewis acid B(C6F5)3 in the presence of hydrosilane. We found that the reaction started with the activation of formic acid through a novel model. Then, the high electrophilicity of the C center of the formic acid unit and the nucleophilic character of the amine resulted in a C?N coupling reaction. Finally, two sequential silyl‐group and H? transfer steps occurred to generate the final product. Upon comparing the reaction barrier and the hydrogenation of indole, our mechanism is more favorable than that proposed by the group of Yu and Fu.  相似文献   

6.
The traditional Biginelli reaction is a three‐component condensation between urea, benzaldehyde and an acetoacetate ester to give a dihydropyrimidinone. An investigation into catalytic and solvent effects has returned the conclusion that the diketo–enol tautomerisation equilibrium of the dicarbonyl reactant dictates the yield of the reaction. Whereas the solvent is responsible for the tautomerisation equilibrium position, the catalyst only serves to eliminate kinetic control from the reaction. Generally, to preserve reaction efficiency and improve sustainability, bio‐derivable p‐cymene was found to be a useful solvent. The metal–enolate intermediate that results from the application of a Lewis acidic catalyst often cited as promoting the reaction appears to hinder the reaction. In this instance, a Brønsted acidic solvent can be used to return greater reactivity to the dicarbonyl reagent.  相似文献   

7.
The reactions of methylenecyclopropanes (MCPs) and epoxides with alcohols and aromatic amines can be carried out in supercritical carbon dioxide (scCO2) or modified scCO2 with perfluorocarbon which offer a way to synthesize various alcohols, amino-alcohols, homoallylic ethers, and amines under an environmentally benign condition.  相似文献   

8.
The frustrated Lewis pair Mes(2)PCH(2)CH(2)B(C(6)F(5))(2) reacts readily with 6-dimethylamino-6-methylfulvene at room temperature to yield the trans-1-[B(C(6)F(5))(2)]-2-[CH(2)CH(2)PMes(2)] disubstituted fulvene derivative 9 that features an internal N-B contact. Thermolysis (80 °C in toluene) results in a complete isomerization to the respective 1-[B(C(6)F(5))(2)]-3-[CH(2)CH(2)PMes(2)] isomer 10. Both compounds were characterized by using X-ray diffraction. A reaction scheme is formulated to rationalize the specific formation of these compounds, involving a retro-hydroboration/hydroboration sequence. The reaction of the 6-dimethylaminofulvene with HB(C(6)F(5))(2) yielded the corresponding parent compound 13 that was also characterized by X-ray diffraction.  相似文献   

9.
The [2+3] cycloaddition of nitrone PhCHdoublebondN(Me)O to nitriles RCtriplebondN (R=Me, Ph, CF(3)) was studied using quantum chemical calculations at the HF/6-31G* and B3LYP/6-31G* level of theory. With MeCN and PhCN, the reaction occurs through a concerted mechanism and leads selectively to Delta(4)-1,2,4-oxadiazolines rather than Delta(2)-1,2,5-oxadiazolines. Electron withdrawing substituents such as CF(3) at the nitrile provoke a non-synchronous bond formation, with the C-O bond being established on an earlier stage than the C-N bond. Additionally, the reaction becomes thermodynamically and kinetically more favourable. In the reaction of adducts of MeCN with BH(3) or BF(3) as model Lewis acids, the mechanism was found to change from fully concerted in the case of free MeCN towards a two-step reaction in the presence of BF(3), in which C-O bond formation occurs first. The BH(3)-mediated reaction occupies an intermediate stage where ring formation occurs in one-step but non-simultaneously, similar to the reaction of CF(3)CN. Interaction of the Lewis acid with the nitrile in the course of the reaction facilitates the cycloaddition by stabilizing transition states, intermediate and product rather than by activating the nitrile. The solvent influences the organic reaction mainly by lowering the energy of the reagents, thus leading to a higher activation barrier in a more polar solvent. In the Lewis acid mediated reaction, in contrast, the intermediate is strongly stabilised by a polar solvent and with that the synchronicity of the reaction changes in favour of a two-step mechanism.  相似文献   

10.
11.
The catalytic efficiency of Fe(+) ion over the CO(2) decomposition in the gas phase has been extensively investigated with the help of electronic structure calculation methods. Potential-energy profiles for the activation process Fe(+) + CO(2) --> CO + FeO(+) along two rival potential reaction paths, namely the insertion and addition pathways, originating from the end-on kappa(1)-O and kappa(2)-O,O coordination modes of CO(2) with the metal ion, respectively, have been explored by DFT calculations. For each pathway the potential energy surfaces of the high-spin sextet (S = 5/2) and the intermediate-spin quartet (S = 3/2) spin-states have been explored. The complete energy reaction profile calculated by a combination of ab initio and density functional theory (DFT) computational techniques reveals a two-state reactivity, involving two spin inversions, for the decomposition process and accounts well for the experimentally observed inertness of bare Fe(+) ions towards CO(2) activation. Furthermore, the coordination of up to three extra ancillary NH(3) ligands with the Fe(+) metal ion has been explored and the geometric and energetic reaction profiles of the CO(2) activation processes Fe(+) + n x NH(3) + CO(2) --> [Fe(NH(3))(n)(CO(2))](+) --> [Fe(NH(3))(n)(O)(CO)](+) --> CO + [Fe(O)(NH(3))(n)](+) (n = 1, 2 or 3) have thoroughly been scrutinized for both the insertion and the addition mechanisms. Inter alia, the geometries and energies of the various states of the [Fe(NH(3))(n)(CO(2))](+) and [Fe(NH(3))(n)(O)(CO)](+) complexes are explored and compared. Finally, a detailed analysis of the coordination modes of CO(2) in the cationic [Fe(NH(3))(n)(CO(2))](+) (n = 0, 1, 2 and 3) complexes is presented.  相似文献   

12.
13.
The molecular mechanisms of the reactions between aryliden-5(4H)-oxazolone 1, and cyclopentadiene (Cp), in presence of Lewis acid (LA) catalyst to obtain the corresponding [4+2] and [4+3] cycloadducts are examined through density functional theory (DFT) calculations at the B3LYP/6-31G* level. The activation effect of LA catalyst can be reached by two ways, that is, interaction of LA either with carbonyl or carboxyl oxygen atoms of 1 to render [4+2] or [4+3] cycloadducts. The endo and exo [4+2] cycloadducts are formed through a highly asynchronous concerted mechanism associated to a Michael-type addition of Cp to the beta-conjugated position of alpha,beta-unsaturated carbonyl framework of 1. Coordination of LA catalyst to the carboxyl oxygen yields a highly functionalized compound, 3, through a domino reaction. For this process, the first reaction is a stepwise [4+3] cycloaddition which is initiated by a Friedel-Crafts-type addition of the electrophilically activated carbonyl group of 1 to Cp and subsequent cyclization of the corresponding zwitterionic intermediate to yield the corresponding [4+3] cycloadduct. The next rearrangement is the nucleophilic trapping of this cycloadduct by a second molecule of Cp to yield the final adduct 3. A new reaction pathway for the [4+3] cycloadditions emerges from the present study.  相似文献   

14.
Cationic Cu?L complexes (L=Buchwald‐type phosphane) with N co‐ligands have been characterised by structural and spectroscopic properties. These copper(I) complexes are extremely active catalysts, far more active than analogous gold(I) complexes, to promote the single and double A3 coupling of terminal alkynes, pyrrolidine and formaldehyde. The activity data show the possible ways in which the solvent can influence the catalytic performance by limiting complex solubility, by solvent decomposition or instability of the copper(I) redox state. Isolation of copper(I) complexes that are likely to be the key catalytic species has allowed light to be shed on the reaction mechanism.  相似文献   

15.
CO2 capture has attracted increasing attention owing to its contribution to global warming and climate change as a greenhouse gas. As an alternative strategy to transition‐metal‐based chemistry and catalysis, frustrated Lewis pairs have been developed to sequester CO2 efficiently under mild conditions. However, the mechanism of CO2 sequestration with amidophosphoranes remains unclear. Herein, we present a thorough density functional theory study on a series of amidophosphoranes. Our results reveal that the interplay of the ring strain and the trans influence determines the reactivities, thus opening a new avenue to the design of frustrated Lewis pairs for CO2 capture.  相似文献   

16.
Interactions of dimethyl sulfoxide with carbon dioxide and water molecules which induce 18 significantly stable complexes are thoroughly investigated. An addition of CO2 or H2O molecules into the DMSO⋯1CO2 and DMSO⋯1H2O systems leads to an increase in the stability of the resulting complexes, in which it is larger for a H2O addition than a CO2. The overall stabilization energy of the DMSO⋯1,2CO2 is mainly contributed by the S=O⋯C Lewis acid–base interaction, whereas the O − H⋯O hydrogen bond plays a significant role in stabilizing complexes of DMSO⋯1,2H2O and DMSO⋯1CO2⋯1H2O. Remarkably, the complexes of DMSO⋯2H2O are found to be more stable than DMSO⋯1CO2⋯1H2O and DMSO⋯2CO2. The level of the cooperativity of multiple interactions in ternary complexes tends to decrease in going from DMSO⋯2H2O to DMSO⋯1CO2⋯1H2O and finally to DMSO⋯2CO2. It is generally found that the red shift of the O − H bond involved in an O − H⋯O hydrogen bond increases while the blue shift of a C − H bond in a C − H⋯O hydrogen bond decreases when a cooperative effect occurs in ternary complexes as compared to those of the corresponding binary complexes. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
18.
The reduction of C?O groups with silanes catalyzed by electron‐deficient boranes follows a counterintuitive mechanism in which the Si? H bond is activated by the boron Lewis acid prior to nucleophilic attack of the carbonyl oxygen atom at the silicon atom. The borohydride thus formed is the actual reductant. These steps were elucidated by using a silicon‐stereogenic silane, but applying the same technique to the related reduction of C?N groups was inconclusive due to racemization of the silicon atom. The present investigation now proves by the deliberate combination of our axially chiral borane catalyst and axially chiral silane reagents (in both enantiomeric forms) that the mechanisms of these hydrosilylations are essentially identical. Unmistakable stereochemical outcomes for the borane/silane pairs show that both participate in the enantioselectivity‐determining hydride‐transfer step. These experiments became possible after the discovery that our axially chiral C6F5‐substituted borane induces appreciable levels of enantioinduction in the imine hydrosilylation.  相似文献   

19.
20.
A series of 21 benzhydrylium ions (diarylmethylium ions) are proposed as reference electrofuges for the development of a general nucleofugality scale, where nucleofugality refers to a combination of leaving group and solvent. A total of 167 solvolysis rate constants of benzhydrylium tosylates, bromides, chlorides, trifluoroacetates, 3,5-dinitrobenzoates, and 4-nitrobenzoates, two-thirds of which have been determined during this work, were subjected to a least-squares fit according to the correlation equation log k(25 degrees C) = sf(Nf + Ef), where sf and Nf are nucleofuge-specific parameters and Ef is an electrofuge-specific parameter. Although nucleofuges and electrofuges characterized in this way cover more than 12 orders of magnitude, a single set of the parameters, namely sf, Nf, and Ef, is sufficient to calculate the solvolysis rate constants at 25 degrees C with an accuracy of +/-16 %. Because sf approximately 1 for all nucleofuges, that is, leaving group/solvent combinations, studied so far, qualitative discussions of nucleofugality can be based on Nf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号