首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The highly selective, fast and effective sample pretreatment technique molecularly imprinted solid-phase extraction (MISPE) can overcome the low sensitivity of the highly efficient capillary electrophoresis-UV method (CE-UV). In this work, narrowly dispersible bisphenol A (BPA)-imprinted polymeric microspheres with a high capacity factor of k′ = 6.8 and an imprinted factor of I = 6.53 were investigated as selective solid-phase extraction (SPE) sorbents for use in extraction of BPA from different sample matrices (tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine). Washing and eluting protocols of MISPE were optimized. Under optimal conditions, recoveries of MISPE were investigated. Recoveries were basically constant and the relative standard deviation (RSD) was lower than 5.8% when loading volumes changed from 1 to 50 mL. Recoveries ranged from 71.20% to 86.23% for different sample matrices. Compared with C18 SPE, MISPE had higher selectivity and recovery for BPA. BPA was determined with good accuracy and precision in different complex samples using CE-UV coupled with MISPE. Spiked recoveries ranged from 95.20% to 105.40%, and the RSD was less than 7.2%. Because a large loading volume was achieved, the enrichment efficiency of pretreatment and the sensitivity of this method were improved. The limits of detection of this MISPE-CE-UV method for BPA in tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine were 3.0 μg L− 1, 5.4 μg L− 1, 6.9 μg L− 1, 2.1 μg L− 1, 1.8 μg L− 1 and 84 μg L− 1, respectively.  相似文献   

2.
In this paper we describe, for the first time, a molecularly imprinted polymer (MIP) for the antibiotic amoxicillin (AMX), synthesised by a noncovalent molecular imprinting approach and used to extract AMX selectively from urine samples. The MIP was applied as a molecularly selective sorbent in molecularly imprinted SPE (MISPE) in an off-line mode, where it showed useful cross-selectivity for a structurally related antibiotic, cephalexin (CPX). By using a MISPE protocol, the MIP was able to selectively extract both AMX and CFX from 5 mL of water spiked with 10 mg/L with recoveries of 75 and 78% for AMX and CFX, respectively. When applied to real samples (urine) at clinically relevant concentrations, recoveries from 2 mL of human urine spiked with 20 mg/L decreased slightly to 65 and 63% for AMX and CFX, respectively. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available SPE cartridges was performed. Improvements in the retention of both AMX and CFX on the MIP were obtained relative to the commercially available cartridges, and the MISPE extracts were considerably cleaner, due to molecularly selective analyte binding by the MIP.  相似文献   

3.
Molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization using tebuconazole (TBZ) as a template. Frontal chromatography and selectivity experiments were used to determine the binding capabilities and binding specificities of different MIPs. The polymer that had the highest binding selectivity and capability was used as the solid-phase extraction (SPE) sorbent for the direct extraction of TBZ from different biological and environmental samples (cabbage, pannage, shrimp, orange juice and tap water). The extraction protocol was optimized and the optimum conditions were: conditioning with 5 mL methanol:acetic acid (9:1), 5 mL methanol and 5 mL water respectively, loading with 5 mL aqueous samples, washing with 1.2 mL acetonitrile (ACN):phosphate buffer (5:5, pH3), and eluting with 3 mL methanol. The MIPs were able to selectively recognize, effectively trap and preconcentrate TBZ over a concentration range of 0.5–15 μmol/L. The intraday and interday RSDs were less than 9.7% and 8.6%, respectively. The limit of quantification was 0.1 μmol/L. Under optimum conditions, the MISPE recoveries of spiked cabbage, pannage, shrimp, orange juice and tap water were 62.3%, 75.8%, 71.6%, 89% and 93.9%, respectively. MISPE gave better HPLC separation efficiencies and higher recoveries than C18 SPE and strong cation exchange (SCX) SPE. Figure HPLC analysis of spiked pannage after MISPE (A) and after C18 SPE (B). HQ (1), E3 (2), p-NP (3), FTF (4), TBZ (5), PNZ (6), HXZ (7) Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
Molecularly imprinted polymers (MIPs) were prepared using bisphenol A (BPA) as a template by precipitation polymerization. The polymer that had the highest binding selectivity and ability was used as solid-phase extraction (SPE) sorbents for direct extraction of BPA from different biological and environmental samples (human serum, pig urine, tap water and shrimp). The extraction protocol was optimized and the optimum conditions were as follows: conditioning with 5 mL methanol–acetic acid (3:1), 5 mL methanol, 5 mL acetonitrile and 5 mL water, respectively, loading with 5 mL aqueous samples, washing with 1 mL acetonitrile, and eluting with 3 mL methanol. MIPs can selectively recognize, effectively trap and preconcentrate BPA over a concentration range of 2–20 μM. Recoveries ranged from 94.03 to 105.3 %, with a relative standard deviation lower than 7.9 %. Under the optimal condition, molecularly imprinted SPE recoveries of spiked human serum, pig urine, tap water and shrimp were 65.80, 82.32, 76.00 and 75.97 %, respectively, when aqueous samples were applied directly. Compared with C18 SPE, a better baseline, better high-performance liquid chromatography separation efficiency and higher recoveries were achieved after molecularly imprinted SPE.   相似文献   

5.
Magnetic molecularly imprinted polymers were prepared using hydrophobic Fe3O4 magnetite as the magnetically susceptible component, oxytetracycline as template molecule, methacrylic acid as functional monomer, and styrene and divinylbenzene as polymeric matrix components. The polymers were applied to the separation of tetracycline antibiotics from egg and tissue samples. The extraction and clean-up procedures were carried out in a single step by blending and stirring the sample, extraction solvent and polymers. The analytes can be transferred from the sample matrix to the polymers directly or through the extraction solvent as medium. When the extraction was complete, the polymers adsorbing the analytes were easily separated from the sample matrix by an adscititious magnet. The analytes eluted from the polymers were determined by liquid chromatography–tandem mass spectrometry. The recoveries ranging from 72.8% to 96.5% were obtained with relative standard deviations in the range of 2.9–12.3%. The limit of detection was less than 0.2 ng g−1. The feasibility of this method was validated by analysis of incurred egg and tissue samples, and the results were compared with those obtained by the classical method in which solvent extraction, centrifugation, and subsequent clean-up and concentration by solid-phase extraction were applied. The proposed method reduced the complicacy of classical method and improved the reliability of method.  相似文献   

6.
The estrogenic compound diethylstilbestrol (DES) is widely studied because of its potential endocrine disruption effects. The prohibition of the use of diethylstilbestrol as a growth promoter has not been enough to ensure the total disappearance of this compound from environmental matrices. Due to the low levels of DES present in the environment, preconcentration and clean up methods are necessary for its analysis. This paper describes the synthesis and use of a molecularly imprinted polymer (MIP) as sorbent for on-column solid-phase extraction of DES from aqueous samples. The selectivity of the DES-MIP was evaluated towards several selected estrogens such as hexestrol (HEX), estrone (E1), estriol (E3), estradiol (E2) and ethynylestradiol (EE2). HPLC-DAD was used to quantify all analytes at 230-nm wavelength. The method has been successfully applied to the analysis of DES in spiked river and tap water samples, with recoveries of 72% and 83% respectively.  相似文献   

7.
High selective molecularly imprinted polymers(MIPs) for tetracycline have been prepared by precipitation polymerization. Effects of monomer and solvent,the ratio of monomer and template and the characterization of the polymer were investigated by frontal chromatography and selectivity experiment.The results clearly indicated that the polymer,which had the highest molecular recognition abilities for tetracycline antibiotics,had been received.  相似文献   

8.
In this work a parathion selective molecularly imprinted polymer was synthesized and applied as a high selective adsorber material for parathion extraction and determination in aqueous samples. The method was based on the sorption of parathion in the MIP according to simple batch procedure, followed by desorption by using methanol and measurement with square wave voltammetry. Plackett-Burman and Box-Behnken designs were used for optimizing the solid-phase extraction, in order to enhance the recovery percent and improve the pre-concentration factor. By using the screening design, the effect of six various factors on the extraction recovery was investigated. These factors were: pH, stirring rate (rpm), sample volume (V1), eluent volume (V2), organic solvent content of the sample (org%) and extraction time (t). The response surface design was carried out considering three main factors of (V2), (V1) and (org%) which were found to be main effects. The mathematical model for the recovery percent was obtained as a function of the mentioned main effects. Finally the main effects were adjusted according to the defined desirability function. It was found that the recovery percents more than 95% could be easily obtained by using the optimized method. By using the experimental conditions, obtained in the optimization step, the method allowed parathion selective determination in the linear dynamic range of 0.20-467.4 μg L−1, with detection limit of 49.0 ng L−1 and R.S.D. of 5.7% (n = 5). Parathion content of water samples were successfully analyzed when evaluating potentialities of the developed procedure.  相似文献   

9.
Hydrophilic molecularly imprinted polymers(MIPs) were prepared using tetracycline as template,methacrylic acid as monomer and glycidilmethacrylate as pro-hydrophilic co-monomer.Compared with common MIPs,the imprinting effect and adsorption amounts of hydrophilic MIPs for tetracycline(TC) were greatly improved in water media.Furthermore,the electrochemical sensor fabricated by modifying hydrophilic MIPs on glassy carbon electrode was developed for the determination of TC in foodstuff samples.  相似文献   

10.
Advanced SPE with molecularly imprinted polymers (MIP) was used in this study. A noncovalent imprinting approach was applied to separate 17β‐estradiol, estriol, and estrone from water samples. Polymer material was prepared by bulk polymerization with methacrylic acid as a functional monomer, divinylbenzene and ethyleneglycol dimethacrylate as crosslinkers, and acetonitrile, acetonitrile/toluene (3:1, v/v) or isooctane/toluene (1:99, v/v) as a porogen. We also prepared an MIP film on a silica gel surface with methacrylic acid and ethyleneglycol dimethacrylate as monomers and acetonitrile as a solvent. Qualitative and quantitative hormone analyses were carried out by HPLC with various detection techniques, including UV/visible spectroscopic detection (diode array detection) and electrochemical detection (CoulArray). The results of the study indicate that MIP technology is an excellent method for the quality control of estrogens in environmental analyses with a low quantification limit for 17β‐estradiol of around 26 (diode array detection) and 0.25 ng/mL (electrochemical detection). The proposed method was found to be suitable for routine determinations of the analyzed compound in environmental laboratories.  相似文献   

11.
An analytical methodology for the analysis of four polar organophophorus pesticides (monocrotophos, mevinphos, phosphamidon, omethoate) in water and soil samples incorporating a molecularly imprinted solid-phase extraction (MISPE) process using a monocrotophos-imprinted polymer was developed. Binding study demonstrated that the polymer showed excellent affinity and high selectivity to monocrotophos. The MISPE procedure including the clean-up step to remove any interferences was optimized. The accuracy and selectivity of the MISPE process developed were verified using a non-imprinted (blank) polymer and a classical ENVI-18 cartridge as the SPE matrix during control experiments. The use of MISPE improved the accuracy and precision of the GC method and lowered the limit of detection. The recoveries of four polar organophosphorus pesticides (OPPs) extracted from 1 L of river water at a 100 ng/L spike level were in the range of 77.5-99.1%. The recoveries of organophosphorus pesticides extracted from a 5-g soil sample at the 100 microg/kg level were in the range of 79.3-93.5%. The limit of detection varied from 10 to 32 ng/L in water and from 12 to 34 microg/kg in soil samples. The molecularly imprinted polymer (MIP) enabled the selective extraction of four organophosphorus pesticides successfully from water and soil samples, demonstrating the potential of molecularly imprinted solid-phase extraction for rapid, selective, and cost-effective sample pretreatment.  相似文献   

12.
Qi P  Wang J  Li Y  Su F  Jin J  Chen J 《Journal of separation science》2011,34(19):2712-2718
A molecularly imprinted polymer (MIP) was prepared using monobutyl phthalate as template. The synthesis was optimized by using different porogens and functional monomers. The MIP was used as a selective sorbent in molecularly imprinted solid-phase extraction (MIP-SPE) for pre-concentration and determination of monobutyl phthalate (mBP) from the bottled water. The difference in recognition selectivity of the polymer columns was observed in HPLC system, and the effect of the mobile phase on the performance of MIP columns was also investigated. Control of the MIP-SPE process is seen as important in helping to facilitate the selective extraction of mBP from water samples. Thereafter, the choice of washing solvent, eluting solvent amount, pH of loading sample, flow rate of loading solution and the loading sample volume was presented. The optimized procedure was described as follows: 25 mL spiked aqueous solution was percolated through the MIP-SPE cartridge at the flow rate of 1.5 mL/min. After rinsing with acetonitrile/methanol mixture (1:1, v/v), the bound analyte was desorbed with 3 mL methanol. The developed MIP-SPE method was demonstrated to be applicable for the analysis of mBP in the bottled water.  相似文献   

13.
A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C(18)-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata (Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9±0.6 μmol/g and 12.1±0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n=5) and 96.0% and 104.2% (RSD 2.9-3.7%, n=5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.  相似文献   

14.
The determination of acidic pharmaceuticals, such as non-steroidal anti-inflammatory drugs NSAIDs and clofibric acid (metabolite of clofibrate), at low ng L−1 levels in wastewater requires highly selective and sensitive analytical procedures. The removal of matrix components during sample preparation results in significant benefits towards reducing the matrix effects during LC-MS analysis. Therefore this work describes a simple method to enrich and clean up NSAIDs and clofibric acid from sewage water using molecularly imprinted solid-phase extraction (MISPE). Final analysis was performed by liquid chromatography-tandem mass spectrometry. The performance of this method has been evaluated in fortified tap and sewage water in terms of recovery, precision, linearity, and method quantification limit. Recovery for all compounds ranged in all matrices between 84 and 116% with intra-day R.S.D. values below 11.5%. Matrix effect evaluation demonstrated that even complex sample matrixes, such as pond or sewage water did not showed significant ion suppression/enhancement compared to tap water. The performance of the method was further emphasized by the study of pond water, which receives treated water from a sewage treatment plant in south Sweden. Raw sewage and treated water were also tested. In those samples, all acidic pharmaceuticals were detected in concentration above method quantification limits ranging from 5.1 to 5153.0 ng L−1.  相似文献   

15.
This research highlights the application of highly efficient molecularly imprinted solid‐phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine‐imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross‐linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid‐phase extraction sorbents for the selective cleanup of melamine. An off‐line molecularly imprinted solid‐phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high‐performance liquid chromatography analysis. Optimum molecularly imprinted solid‐phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6–96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid‐phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre‐treatment of melamine in aquaculture feed samples.  相似文献   

16.
This work describes an on-line molecularly imprinted solid-phase extraction (MISPE) method for spectrophotometric determination of nicotine in urine samples of smokers. This method is based on manganese (VII) to manganese (VI) reduction in an alkaline medium, promoted by nicotine. Two wash solutions (1:4 (v/v) acetonitrile:sodium hydroxide - pH 11.4, and nitric acid - pH 2.5) were employed to circumvent interferences. Aqueous solutions containing nicotine plus different possible concomitants (cotinine, anabasine, norcotinine and caffeine) were tested individually. The analytical calibration curve was prepared in urine samples collected from non-smokers and spiked with nicotine standard from 1.1 to 60 μmol L−1 (r2 > 0.998). The limit of quantification and the analytical frequency were 1.1 μmol L−1 and 11 h−1, respectively. The precision, evaluated using 3, 10 and 30 μmol L−1 nicotine in urine, was 10, 10 and 4% (intra-day precision) and 12, 13 and 5% (inter-day precision), respectively. Accuracy was checked through high performance liquid chromatography and the results did not present significant differences at the 95% confidence level according to the Student's t-test.  相似文献   

17.
王莉燕  王加男  李金花  陈令新 《色谱》2020,38(3):265-277
抗生素的滥用及残留对生物体和环境造成极大危害,其含量低、种类多、基质复杂,通常需要进行样品前处理结合色谱分析以实现灵敏测定。分子印迹聚合物(MIPs)能选择性识别、有效富集目标分析物并消除干扰,已广泛用于抗生素的样品前处理中。该文对MIPs制备中面临的挑战进行了总结;对2016年以来抗生素MIPs的固相萃取应用进行了综述和展望,主要包括固相萃取、分散固相萃取、磁固相萃取、基质固相分散萃取、固相微萃取、搅拌棒吸附萃取。此外,该文重点介绍了抗生素MIPs的印迹新策略,如多模板、多功能单体、虚拟模板、刺激响应、亲水性印迹等。最后,该文对抗生素MIPs的制备和前处理应用进行了展望。  相似文献   

18.
A simple, sensitive, and selective molecularly imprinted solid‐phase extraction and spectrophotometric method has been developed for the clean‐up and preconcentration of indapamide from human urine. Molecularly imprinted polymers were prepared by a non‐covalent imprinting approach using indapamide as a template molecule, 2‐(trifluoromethyl) acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, N,N‐azobisisobutyronitrile as a thermal initiator and acetonitrile as a porogenic solvent. A non‐imprinted polymer was also prepared in the same way, but in the absence of template. Molecularly imprinted polymer and non‐imprinted polymer sorbents were dry‐packed into solid‐phase extraction cartridges. Eluates from cartridges were analyzed using a spectrophotometer for the determination of indapamide by referring to the calibration curve in the range 0.14–1.50 μg/mL. Preconcentration factor, limit of detection, and limit of quantification were 16.30, 0.025 μg/mL, and 0.075 μg/mL, respectively. A relatively high imprinting factor (9.3) was also achieved and recovery values for the indapamide spiked into human urine were in the range of 80.1–81.2%. In addition, relatively low within‐day (0.17–0.42%) and between‐day (1.1–1.4%) precision values were obtained as well. The proposed molecularly imprinted solid‐phase extraction and spectrophotometric method was successfully applied to selective extraction, preconcentration, and determination of indapamide from human urine samples.  相似文献   

19.
A molecularly imprinted polymer designed for the selective extraction of donepezil from serum samples was synthesized using a noncovalent molecular imprinting approach. The molecularly imprinted polymer was evaluated chromatographically and then its affinity for donepezil was confirmed by solid‐phase extraction. The optimal conditions for solid‐phase extraction were provided by cartridge conditioning using acidified water purified from a Milli‐Q system, sample loading under basic aqueous conditions, clean‐up using acetonitrile, and elution with methanol/tetrahydrofuran. Desirable molecular recognition properties of the molecularly imprinted polymer led to good donepezil recoveries (90–102%). The data indicated that the imprinted polymer has a perfect selectivity and affinity for donepezil and could be used for selective extraction and analysis of donepezil in human serum.  相似文献   

20.
Cotinine, the main metabolite of nicotine in human body, is widely used as a biomarker for assessment of direct or passive exposure to tobacco smoke. A method for molecularly imprinted solid-phase extraction (MISPE) of cotinine from human urine has been investigated. The molecularly imprinted polymer (MIP) with good selectivity and affinity for cotinine was synthesized using cotinine as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with aqueous standards, by comparing recovery data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from the aqueous solutions resulted in more than 80% recovery. A range of linearity for cotinine between 0.05 and 5 μg mL−1 was obtained by loading 1 mL blank urine samples spiked with cotinine at different concentrations in acetate buffer of pH 9.0, and by using double basic washing and acidic elution. The intra-day coefficient of variation (CV) was below 7% and inter-day CV was below 10%. This investigation has provided a reliable MISPE–HPLC method for determination of cotinine in human urine from both active smokers and passive smokers. Figure  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号