首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current systems for similarity-based virtual screening use similarity measures in which all the fragments in a fingerprint contribute equally to the calculation of structural similarity. This paper discusses the weighting of fragments on the basis of their frequencies of occurrence in molecules. Extensive experiments with sets of active molecules from the MDL Drug Data Report and the World of Molecular Bioactivity databases, using fingerprints encoding Tripos holograms, Pipeline Pilot ECFC_4 circular substructures and Sunset Molecular keys, demonstrate clearly that frequency-based screening is generally more effective than conventional, unweighted screening. The results suggest that standardising the raw occurrence frequencies by taking the square root of the frequencies will maximise the effectiveness of virtual screening. An upper-bound analysis shows the complex interactions that can take place between representations, weighting schemes and similarity coefficients when similarity measures are computed, and provides a rationalisation of the relative performance of the various weighting schemes.  相似文献   

2.
Query expansion is the process of reformulating an original query to improve retrieval performance in information retrieval systems. Relevance feedback is one of the most useful query modification techniques in information retrieval systems. In this paper, we introduce query expansion into ligand-based virtual screening (LBVS) using the relevance feedback technique. In this approach, a few high-ranking molecules of unknown activity are filtered from the outputs of a Bayesian inference network based on a single ligand molecule to form a set of ligand molecules. This set of ligand molecules is used to form a new ligand molecule. Simulated virtual screening experiments with the MDL Drug Data Report and maximum unbiased validation data sets show that the use of ligand expansion provides a very simple way of improving the LBVS, especially when the active molecules being sought have a high degree of structural heterogeneity. However, the effectiveness of the ligand expansion is slightly less when structurally-homogeneous sets of actives are being sought.  相似文献   

3.
Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K (D))?=?mM?-?μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46?%) with K (D)?相似文献   

4.
Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive molecules. FBDD relies on fragment libraries, generally of modest size, but of high chemical diversity. Although good chemical diversity in FBDD libraries has been achieved in many respects, achieving shape diversity – particularly fragments with three-dimensional (3D) structures – has remained challenging. A recent analysis revealed that >75% of all conventional, organic fragments are predominantly 1D or 2D in shape. However, 3D fragments are desired because molecular shape is one of the most important factors in molecular recognition by a biomolecule. To address this challenge, the use of inert metal complexes, so-called ‘metallofragments’ (mFs), to construct a 3D fragment library is introduced. A modest library of 71 compounds has been prepared with rich shape diversity as gauged by normalized principle moment of inertia (PMI) analysis. PMI analysis shows that these metallofragments occupy an area of fragment space that is unique and highly underrepresented when compared to conventional organic fragment libraries that are comprised of orders of magnitude more molecules. The potential value of this metallofragment library is demonstrated by screening against several different types of proteins, including an antiviral, an antibacterial, and an anticancer target. The suitability of the metallofragments for future hit-to-lead development was validated through the determination of IC50 and thermal shift values for select fragments against several proteins. These findings demonstrate the utility of metallofragment libraries as a means of accessing underutilized 3D fragment space for FBDD against a variety of protein targets.

Fragment-based drug discovery (FBDD) using 3-dimensional metallofragments is a new strategy for the identification of bioactive molecules.  相似文献   

5.
6.
Fragment-based drug discovery (FBDD) has become an established approach for the generation of early lead candidates. However, despite its success and inherent advantages, hit-to-candidate progression for FBDD is not necessarily faster than that of traditional high-throughput screening. Thus, new technology-driven library design strategies have emerged as a means to facilitate more efficient fragment screening and/or subsequent fragment-to-hit chemistry. This minireview discusses such strategies, which cover the use of labeled fragments for NMR spectroscopy, X-ray crystallographic screening of specialized fragments, covalent linkage for mass spectrometry, dynamic combinatorial chemistry, and fragments optimized for easy elaboration.  相似文献   

7.
We describe a library of molecular fragments designed to model and predict non-bonded interactions between atoms. We apply the Bayesian approach, whereby prior knowledge and uncertainty of the mathematical model are incorporated into the estimated model and its parameters. The molecular interaction data are strengthened by narrowing the atom classification to 14 atom types, focusing on independent molecular contacts that lie within a short cutoff distance, and symmetrizing the interaction data for the molecular fragments. Furthermore, the location of atoms in contact with a molecular fragment are modeled by Gaussian mixture densities whose maximum a posteriori estimates are obtained by applying a version of the expectation-maximization algorithm that incorporates hyperparameters for the components of the Gaussian mixtures. A routine is introduced providing the hyperparameters and the initial values of the parameters of the Gaussian mixture densities. A model selection criterion, based on the concept of a `minimum message length' is used to automatically select the optimal complexity of a mixture model and the most suitable orientation of a reference frame for a fragment in a coordinate system. The type of atom interacting with a molecular fragment is predicted by values of the posterior probability function and the accuracy of these predictions is evaluated by comparing the predicted atom type with the actual atom type seen in crystal structures. The fact that an atom will simultaneously interact with several molecular fragments forming a cohesive network of interactions is exploited by introducing two strategies that combine the predictions of atom types given by multiple fragments. The accuracy of these combined predictions is compared with those based on an individual fragment. Exhaustive validation analyses and qualitative examples (e.g., the ligand-binding domain of glutamate receptors) demonstrate that these improvements lead to effective modeling and prediction of molecular interactions.  相似文献   

8.
We have designed four generations of a low molecular weight fragment library for use in NMR-based screening against protein targets. The library initially contained 723 fragments which were selected manually from the Available Chemicals Directory. A series of in silico filters and property calculations were developed to automate the selection process, allowing a larger database of 1.79 M available compounds to be searched for a further 357 compounds that were added to the library. A kinase binding pharmacophore was then derived to select 174 kinase-focused fragments. Finally, an additional 61 fragments were selected to increase the number of different pharmacophores represented within the library. All of the fragments added to the library passed quality checks to ensure they were suitable for the screening protocol, with appropriate solubility, purity, chemical stability, and unambiguous NMR spectrum. The successive generations of libraries have been characterized through analysis of structural properties (molecular weight, lipophilicity, polar surface area, number of rotatable bonds, and hydrogen-bonding potential) and by analyzing their pharmacophoric complexity. These calculations have been used to compare the fragment libraries with a drug-like reference set of compounds and a set of molecules that bind to protein active sites. In addition, an analysis of the overall results of screening the library against the ATP binding site of two protein targets (HSP90 and CDK2) reveals different patterns of fragment binding, demonstrating that the approach can find selective compounds that discriminate between related binding sites.  相似文献   

9.
We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, “naively” defined local dipole moments are origin‐dependent. Inspired by previous work based on Bader's atoms‐in‐molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin‐independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
We present an efficient algorithm for the structural alignment of medium-sized organic molecules. The algorithm has been developed for applications in 3D QSAR and in receptor modeling. The method assumes one of the molecules, the reference ligand, to be presented in the conformation that it adopts inside the receptor pocket. The second molecule, the test ligand, is considered to be flexible, and is assumed to be given in an arbitrary low-energy conformation. Ligand flexibility is modeled by decomposing the test ligand into molecular fragments, such that ring systems are completely contained in a single fragment. Conformations of fragments and torsional angles of single bonds are taken from a small finite set, which depends on the fragment and bond, respectively. The algorithm superimposes a distinguished base fragment of the test ligand onto a suitable region of the reference ligand and then attaches the remaining fragments of the test ligand in a step-by-step fashion. During this process, a scoring function is optimized that encompasses bonding terms and terms accounting for steric overlap as well as for similarity of chemical properties of both ligands. The algorithm has been implemented in the FLEXS system. To validate the quality of the produced results, we have selected a number of examples for which the mutual superposition of two ligands is experimentally given by the comparison of the binding geometries known from the crystal structures of their corresponding protein–ligand complexes. On more than two-thirds of the test examples the algorithm produces rms deviations of the predicted versus the observed conformation of the test ligand below 1.5 Å. The run time of the algorithm on a single problem instance is a few minutes on a common-day workstation. The overall goal of this research is to drastically reduce run times, while limiting the inaccuracies of the model and the computation to a tolerable level.  相似文献   

11.
Force field based energy minimization of molecular structures is a central task in computational chemistry and biology. Solving this problem usually requires efficient local minimization techniques, i.e., iterative two‐step methods that search first for a descent direction and then try to estimate the step width. The second step, the so called line search, typically uses polynomial interpolation schemes to estimate the next trial step. However, dependent on local properties of the objective function alternative schemes may be more appropriate especially if the objective function shows singularities or exponential behavior. As the choice of the best interpolation scheme cannot be made a priori, we propose a new consensus line search approach that performs several different interpolation schemes at each step and then decides which one is the most reliable at the current position. Although a naive consensus approach would lead to severe performance impacts, our method does not require additional evaluations of the energy function, imposing only negligible computational overhead. Additionally, our method can be easily adapted to the local behavior of other objective functions by incorporating suitable interpolation schemes or omitting non‐fitting schemes. The performance of our consensus line search approach has been evaluated and compared to established standard line search algorithms by minimizing the structures of a large set of molecules using different force fields. The proposed algorithm shows better performance in almost all test cases, i.e., it reduces the number of iterations and function and gradient evaluations, leading to significantly reduced run times. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

12.
Chemical characteristic fragment filtering in MSn chromatograms was proposed to detect and identify the components in rhubarb rapidly using high‐performance liquid chromatography coupled with linear ion trap–Orbitrap mass spectrometry. Characteristic fragments consist of diagnostic ions and neutral loss fragments. Characteristic fragment filtering is a postacquisition data mining method for the targeted screening of groups with specific structures, including three steps: first, in order to comprehensively summarize characteristic fragments for global identification of the ingredients in rhubarb, representative authentic standards of dominant chemical categories contained in rhubarb were chosen, from which fragmentation rules and a characteristic fragments schedule were proposed; second, characteristic fragment filtering was used to rapidly recognize analogous skeletons; finally, combined with retention time, accurate mass, characteristic fragments, and previous literature, the structures of the filtered compounds were identified or tentatively characterized. As a result, a total of 271 compounds were detected and identified in rhubarb, including 34 anthraquinones, 83 anthrones, 46 tannins, 17 stilbenes, 24 phenylbutanones, 26 acylglucosides, 26 chromones, and 15 other compounds, 69 of which are potentially new compounds. The proposed characteristic fragment filtering strategy would be a reference for the large‐scale detection and identification of the ingredients of herbal medicines.  相似文献   

13.
A method of expansion of molecular orbital wave functions into valence bond (VB ) functions is extended to molecular fragments. The wave function is projected onto a basis of mixed determinants, involving molecular orbitals as well as fragment atomic orbitals, and is further expressed as a linear combination of VB functions, characteristic of structural formulas of the fragment but whose remaining bonds are frozen. Structural weights for the fragment are deduced from this expression. Delocalized molecular orbitals are used as a startpoint, as they are after an ordinary SCF calculation. Wave functions of medium-sized molecules may be analyzed with reasonable storage requirements in a computer.  相似文献   

14.
Fragment-based screening is an emerging technology which is used as an alternative to high-throughput screening (HTS), and often in parallel. Fragment screening focuses on very small compounds. Because of their small size and simplicity, fragments exhibit a low to medium binding affinity (mM to μM) and must therefore be screened at high concentration in order to detect binding events. Since some issues are associated with high-concentration screening in biochemical assays, biophysical methods are generally employed in fragment screening campaigns. Moreover, these techniques are very sensitive and some of them can give precise information about the binding mode of fragments, which facilitates the mandatory hit-to-lead optimization. One of the main advantages of fragment-based screening is that fragment hits generally exhibit a strong binding with respect to their size, and their subsequent optimization should lead to compounds with better pharmacokinetic properties compared to molecules evolved from HTS hits. In other words, fragments are interesting starting points for drug discovery projects. Besides, the chemical space of low-complexity compounds is very limited in comparison to that of drug-like molecules, and thus easier to explore with a screening library of limited size. Furthermore, the "combinatorial explosion" effect ensures that the resulting combinations of interlinked binding fragments may cover a significant part of "drug-like" chemical space. In parallel to experimental screening, virtual screening techniques, dedicated to fragments or wider compounds, are gaining momentum in order to further reduce the number of compounds to test. This article is a review of the latest news in both experimental and in silico virtual screening in the fragment-based discovery field. Given the specificity of this journal, special attention will be given to fragment library design.  相似文献   

15.
16.
We have developed a general approach for the calculation of the single molecule polarization correlation function C(t), which delivers a correlation of the emission dichroisms at time 0 and t. The approach is model independent and valid for general asymmetric top molecules. The key dynamic quantities of our analysis are the even-rank orientational correlation functions, the weighted sum of which yields C(t). We have demonstrated that the use of nonorthogonal schemes for the detection of the single molecule polarization responses makes it possible to manipulate the weighting coefficients in the expansion of C(t). Thus valuable information about the orientational correlation functions of the rank higher than the second can be extracted from C(t).  相似文献   

17.
Human interaction with the world is dominated by uncertainty. Probability theory is a valuable tool to face such uncertainty. According to the Bayesian definition, probabilities are personal beliefs. Experimental evidence supports the notion that human behavior is highly consistent with Bayesian probabilistic inference in both the sensory and motor and cognitive domain. All the higher-level psychophysical functions of our brain are believed to take the activities of interconnected and distributed networks of neurons in the neocortex as their physiological substrate. Neurons in the neocortex are organized in cortical columns that behave as fuzzy sets. Fuzzy sets theory has embraced uncertainty modeling when membership functions have been reinterpreted as possibility distributions. The terms of Bayes’ formula are conceivable as fuzzy sets and Bayes’ inference becomes a fuzzy inference. According to the QBism, quantum probabilities are also Bayesian. They are logical constructs rather than physical realities. It derives that the Born rule is nothing but a kind of Quantum Law of Total Probability. Wavefunctions and measurement operators are viewed epistemically. Both of them are similar to fuzzy sets. The new link that is established between fuzzy logic, neuroscience, and quantum mechanics through Bayesian probability could spark new ideas for the development of artificial intelligence and unconventional computing.  相似文献   

18.
An improved scheme to help in the prediction of protein structure is presented. This procedure generates improved starting conformations of a protein suitable for energy minimization. Trivariate gaussian distribution functions for the π, ψ, and χ1 dihedral angles have been derived, using conformational data from high resolution protein structures selected from the Protein Data Bank (PDB). These trivariate probability functions generate initial values for the π, ψ, and χ1 dihedral angles which reflect the experimental values found in the PDB. These starting structures speed the search of the conformational space by focusing the search mainly in the regions of native proteins. The efficiency of the new trivariate probability distributions is demonstrated by comparing the results for the α-class polypeptide fragment, the mutant Antennapedia (C39 → S) homeodomain (2HOA), with those from two reference probability functions. The first reference probability function is a uniform or flat probability function and the second is a bivariate probability function for π and ψ. The trivariate gaussian probability functions are shown to search the conformational space more efficiently than the other two probability functions. The trivariate gaussian probability functions are also tested on the binding domain of Streptococcal protein G (2GB1), an α/β class protein. Since presently available energy functions are not accurate enough to identify the most native-like energy-minimized structures, three selection criteria were used to identify a native-like structure with a 1.90-Å rmsd from the NMR structure as the best structure for the Antennapedia fragment. Each individual selection criterion (ECEPP/3 energy, ECEPP/3 energy-plus-free energy of hydration, or a knowledge-based mean field method) was unable to identify a native-like structure, but simultaneous application of more than one selection criterion resulted in a successful identification of a native-like structure for the Antennapedia fragment. In addition to these tests, structure predictions are made for the Antennapedia polypeptide, using a Pattern Recognition-based Importance-Sampling Minimization (PRISM) procedure to predict the backbone conformational state of the mutant Antennapedia homeodomain. The ten most probable backbone conformational state predictions were used with the trivariate and bivariate gaussian dihedral angle probability distributions to generate starting structures (i.e., dihedral angles) suitable for energy minimization. The final energy-minimized structures show that neither the trivariate nor the bivariate gaussian probability distributions are able to overcome the inaccuracies in the backbone conformational state predictions to produce a native-like structure. Until highly accurate predictions of the backbone conformational states become available, application of these dihedral angle probability distributions must be limited to problems, such as homology modeling, in which only a limited portion of the backbone (e.g., surface loops) must be explored. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
A new type of molecular representation is introduced that is based on activity class characteristic substructures extracted from random fragment populations. Mapping of characteristic substructures is used to determine atom match rates in active molecules. Comparison of match rates of bonded atoms defines a hierarchical molecular fragmentation scheme. Active compounds are encoded as fragmentation pathways isolated from core trees. These paths are amenable to biological sequence alignment methods in combination with substructure-based scoring functions. From multiple core path alignments, consensus fragment sequences are derived that represent compound activity classes. Consensus fragment sequences weighted by increasing structural specificity can also be used to map molecules and search databases for active compounds.  相似文献   

20.
Shape‐based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape‐based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape‐based virtual screening and that it can be successfully used as a prefilter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape‐based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade‐off between run‐time performance and virtual screening performance. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号