首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The structure of an accurate ab initio model of aqueous sodium ion was calculated at two high temperature state points (573 K, 0.72 g/cm(3) and 723 K, 0.0098 g/cm(3)) by a two-step procedure. First, the structure of an approximate model (the TIP4-FQ model for water and Na-H2O interactions from Liu et al.) was calculated from a molecular dynamics simulation of the model. Then the difference between the structure of the ab initio model and the approximate model was calculated by non-Boltzmann weighting of a sample of 500 configurations taken from the approximate model simulation. Radial distribution functions, average coordination numbers, the distribution of coordination numbers, and an analysis of orientations of water in the first coordination shell are reported for both state points. The average oxygen coordination number (calculated up to the inflection point in the running coordination number) was 4.71 at 573 K and 3.48 at 723 K. Most configurations have four or five coordinated waters at 573 K and three or four at 723 K. At 723 K, waters with their dipole moments pointed at the sodium ion were most common. A wider variety of orientations was found at 573 K and higher density. The difference in structure between the approximate and quantum models was small but significant.  相似文献   

2.
The potential of mean force (PMF) of sodium chloride in water has been calculated by using the ab initio classical free-energy perturbation method at five state points: at 973 K with densities of 0.2796, 0.0935, and 0.0101 g/cm (3) and at 723 K with densities of 0.0897 and 0.0098 g/cm (3). The method is based on a QM-MM model in which Na-H 2O, Cl-H 2O, and Na-Cl interactions are calculated by ab initio methods. The water-water interactions are from the polarizable TIP4P-FQ model. The logarithm of the dissociation constant (log K c) has been calculated from the PMF. These predictions, together with experimental measurements, were used to derive an equation for log K c at densities from 0 to 0.9 g/cm (3) and temperatures from 723 to 1073 K, as well as from 600 to 1073 K for densities from 0.29 g/cm (3) to 0.9 g/cm (3). Extrapolation of the present equation below 723 K for densities less than 0.29 g/cm (3) does not fit the experimental results. This is attributed to long-range changes in the local dielectric constant due to the high compressibility. Comparisons with previous predictions and simulations are presented.  相似文献   

3.
An efficient approach is described for using accurate ab initio calculations to determine the rates of elementary condensation and evaporation processes that lead to nucleation of aqueous aerosols. The feasibility of the method is demonstrated in an application to evaporation rates of water dimer at 230 K. The method, known as ABC-FEP (ab initio/classical free energy perturbation), begins with a calculation of the potential of mean force for the dissociation (evaporation) of small water clusters using a molecular dynamics (MD) simulation with a model potential. The free energy perturbation is used to calculate how changing from the model potential to a potential calculated from ab initio methods would alter the potential of mean force. The difference in free energy is the Boltzmann-weighted average of the difference between the ab initio and classical potential energies, with the average taken over a sample of configurations from the MD simulation. In principle, the method does not require a highly accurate model potential, though more accurate potentials require fewer configurations to achieve a small sampling error in the free energy perturbation step. To test the feasibility of obtaining accurate potentials of mean force from ab initio calculations at a modest number of configurations, the free energy perturbation method has been used to correct the errors when some standard models for bulk water (SPC, TIP4P, and TIP4PFQ) are applied to water dimer. To allow a thorough exploration of sampling issues, a highly accurate fit to results of accurate ab initio calculations, known as SAPT-5s, as been used a proxy for the ab initio calculations. It is shown that accurate values for a point on the potential of mean force can be obtained from any of the water models using ab initio calculations at only 50 configurations. Thus, this method allows accurate simulations of small clusters without the need to develop water models specifically for clusters.  相似文献   

4.
Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na(+), K(+), and Cl(-), respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.  相似文献   

5.
We perform ab initio molecular dynamics simulations of the aqueous formate ion. The mean number of water molecules in the first solvation shell, or the hydration number, of each formate oxygen is found to be consistent with recent experiments. Our ab initio pair correlation functions, however, differ significantly from many classical force field results and hybrid quantum mechanics/molecular mechanics predictions. They yield roughly one less hydrogen bond between each formate oxygen and water than force field or hybrid methods predict. Both the BLYP and PW91 exchange correlation functionals give qualitatively similar results. The time dependence of the hydration numbers are examined, and Wannier function techniques are used to analyze electronic configurations along the molecular dynamics trajectory.  相似文献   

6.
Several Li+- and Na+-acetonitrile models were derived from ab initio calculations at the counterpoise-corrected MP2/TZV++(d,p) level for distorted ion-(MeCN)n clusters with n=1, 4 and 6. Two different many-body ion-acetonitrile models were constructed: an effective three-body potential for use with the six-site effective pair model of Böhm et al., and an effective polarizable many-body model. The polarizable acetonitrile model used in the latter model is a new empirical model which was also derived in the present paper. Mainly for comparative purposes, two ion-acetonitrile pair potentials were also constructed from the ab initio cluster calculations: one pure pair potential and one effective pair potential. Using all these potential models, MD simulations in the NPT ensemble were performed for the pure acetonitrile liquid and for Li+(MeCN) and Na+(MeCN) solutions with 1 ion in 512 solvent molecules and with a simulation time of at least 120 ps per system. Thermodynamic properties, solvation-shell structure and the self-diffusion coefficient of the ions and of the solvent molecules were calculated and compared between the different models and with experimental data, where available. The Li+ ion is found to be four-coordinated when the new many-body potentials are used, in contrast to the six-coordinated structure obtained for the pure pair and effective pair potentials. The coordination number of Na+ is close to six for all the models derived here, although the coordination number becomes slightly smaller with the many-body potentials. For both ions, the solvent molecules in the first shell point their nitrogen ends towards the cation, while in the second shell the opposite orientation is the most common.  相似文献   

7.
Structural and dynamical properties of the Tl(I) ion in dilute aqueous solution have been investigated by ab initio quantum mechanics in combination with molecular mechanics. The first shell plus a part of the second shell were treated by quantum mechanics at Hartree-Fock level, the rest of the system was described by an ab initio constructed potential. The radial distribution functions indicate two different bond lengths (2.79 and 3.16 A) in the first hydration shell, in good agreement with large-angle X-ray scattering and extended X-ray absorption fine structure spectroscopy results. The average first shell coordination number was found as 5.9, and several other structural parameters such as coordination number distributions, angular distribution functions, and tilt- and theta-angle distributions were evaluated. The ion-ligand vibration spectrum and reorientational times were obtained via velocity auto correlation functions. The Tl-O stretching force constant is very weak with 5.0 N m(-1). During the simulation, numerous water exchange processes took place between first and second hydration shell and between second shell and bulk. The mean ligand residence times for the first and second shell were determined as 1.3 and 1.5 ps, respectively, indicating Tl(I) to be a typical "structure-breaker". The calculated hydration energy of -84 +/- 16 kcal mol(-1) agrees well with the experimental value of -81 kcal mol(-1). All data obtained for structure and dynamics of hydrated Tl(I) characterize this ion as a very special case among all monovalent metal ions, being the most potent "structure-breaker", but at the same time forming a distinct second hydration shell and thus having a far-reaching influence on the solvent structure.  相似文献   

8.
Structural and dynamical properties of the Cr(III) ion in aqueous solution have been investigated using a combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation. The hydration structure of Cr(III) was determined in terms of radial distribution functions, coordination numbers, and angular distributions. The QM/MM simulation gives coordination numbers of 6 and 15.4 for the first and second hydration shell, respectively. The first hydration shell is kinetically very inert but by no means rigid and variations of the first hydration shell geometry lead to distinct splitting in the vibrational spectra of Cr(H(2)O)(6) (3+). A mean residence time of 22 ps was obtained for water ligands residing in the second hydration shell, which is remarkably shorter than the experimentally estimated value. The hydration energy of -1108 +/- 7 kcal/mol, obtained from the QM/MM simulation, corresponds well to the experimental hydration enthalpy value.  相似文献   

9.
The hydration of K(+) is studied using a hierarchy of theoretical approaches, including ab initio Born-Oppenheimer molecular dynamics and Car-Parrinello molecular dynamics, a polarizable force field model based on classical Drude oscillators, and a nonpolarizable fixed-charge potential based on the TIP3P water model. While models based more directly on quantum mechanics offer the possibility to account for complex electronic effects, polarizable and fixed-charges force fields allow for simulations of large systems and the calculation of thermodynamic observables with relatively modest computational costs. A particular emphasis is placed on investigating the sensitivity of the polarizable model to reproduce key aspects of aqueous K(+), such as the coordination structure, the bulk hydration free energy, and the self diffusion of K(+). It is generally found that, while the simple functional form of the polarizable Drude model imposes some restrictions on the range of properties that can simultaneously be fitted, the resulting hydration structure for aqueous K(+) agrees well with experiment and with more sophisticated computational models. A counterintuitive result, seen in Car-Parrinello molecular dynamics and in simulations with the Drude polarizable force field, is that the average induced molecular dipole of the water molecules within the first hydration shell around K(+) is slightly smaller than the corresponding value in the bulk. In final analysis, the perspective of K(+) hydration emerging from the various computational models is broadly consistent with experimental data, though at a finer level there remain a number of issues that should be resolved to further our ability in modeling ion hydration accurately.  相似文献   

10.
Realistic molecular dynamics simulations of polyaminocarboxylate complexes of gadolinium (III) ion in water are performed, providing coordination numbers and average residence times in quantitative agreement with available experimental data. A theoretical analysis, based on fitting a fluctuating charges model on ab initio data, also indicates that charge transfer between the ion and the ligand is significant.  相似文献   

11.
A systematic ab initio investigation of the water-assisted decomposition of chloromethanol, dichloromethanol, and formyl chloride as a function of the number of water molecules (up to six) building up the solvation shell is presented. The decomposition reactions of the chlorinated methanols and formyl chloride are accelerated substantially as the reaction system involves additional explicit coordination of water molecules. Rate constants for the decomposition of chlorinated methanols and formyl chloride were found to be in reasonable agreement with previous experimental observations of aqueous phase decomposition reactions of dichloromethanol [CHCl(2)(OH)] and formyl chloride. For example, using the calculated activation free energies in conjunction with the stabilization free energies from the ab initio calculations, the rate constant was predicted to be 1.2-1.5 x 10(4) s(-1) for the decomposition of formyl chloride in aqueous solution. This is in good agreement with the experimental rate constant of about 10(4) s(-1) reported in the literature. The mechanism for the water catalysis of the decomposition reactions as well as probable implications for the decomposition of these chlorinated methanol compounds and formaldehydes in the natural environment and as intermediates in advanced oxidation processes are briefly discussed.  相似文献   

12.
X-ray absorption spectroscopy measurements were used to determine the structure of the first coordination shell of Fe(II) ions in aqueous and acetone based solutions. Extended X-ray absorption fine structure analysis coupled with ab initio X-ray absorption near edge structure calculations confirms the octahedral coordination of the iron ion in water based solution. Data collected for acetone rich solutions can be reproduced assuming coexistence of the octahedral Fe(H(2)O)(6)(2+) and tetrahedral [FeCl(4)](2-) complexes. Distortion of the tetrahedral coordination of ion was detected in some of the acetone based solutions.  相似文献   

13.
Monte Carlo simulations have been carried out for the system consisting of a 1,4,7,10-tetraazacyclododecane (cyclen)-lithium complex in 201 water molecules. The volume of the periodic cube was calculated using the experimental density of pure water at 298 K and 1 atm of 1 g.cm(-)(3), plus additional space occupied by the complex. The geometry of the complex is the alternated form, where the ion is located at the center of the cyclen. The complex-water interaction was represented by the cyclen-water and lithium-water pair potentials, both of which were developed on the basis of ab initio calculations. The results show two layers of solvation shells consisting of 2 and 6.9 water molecules. Two water molecules in the first solvation shell (O(1) and O(2)) bind directly to the ion in which the ion-oxygen distance is 2.38 A, the dipole vector points to the ion, and rotation takes place around the ion-oxygen axis. In the next layer, 4 water molecules coordinate simultaneously to the first 2 water molecules in the first shell and the NH functional groups of cyclen. The remaining 2.9 water molecules in the second layer are also coordinated to be in the first half-hydration shell of O(1) and O(2).  相似文献   

14.
Using an ab initio molecular orbital (MO) method, the normal frequencies are calculated for perfluorinated lithium sulfonate and carboxylate membranes by construction of a cluster model, which severs the ion core from the polymer chain, and then analysis of the experimentally observed infrared (IR) spectra is carried out. During the process of dehydration, small sharp peaks at about 3650 and 3700 cm(-1) appeared on the shoulder of the broad band at about 3500 cm(-1). These sharp peaks are identified as the symmetric and asymmetric stretching modes of the free water molecule. Furthermore, by estimation of the evaporation ratio based on thermochemical analysis, it can be assumed that the first hydration shells are naked in some part of the ion core, thereby allowing evaporation to take place within the external hydration shell during the dehydration process.  相似文献   

15.
Results from several commonly used approximate methods of evaluating electrostatic interactions have been compared to the rigorous, nonexpanded electrostatic energies at both uncorrelated and correlated levels of theory. We examined a number of energy profiles for both hydrogen bonded and stacked configurations of the nucleic acid base pairs. We found that the penetration effects play an extremely important role and the expanded electrostatic energies are significantly underestimated with respect to the ab initio values. Apart from the inability to reproduce the magnitudes of the ab initio electrostatic energy, there are other problems with the available approximate electrostatic models. For example, the distributed multipole analysis, one of the most advanced methods, is extremely sensitive to the basis set and level of theory used to evaluate the multipole moments. Detailed ab initio results are provided that other researchers could use to test their approximate models.  相似文献   

16.
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.  相似文献   

17.
《Chemical physics》1987,111(2):241-247
A Monte Carlo simulation of Fe2+ aqueous solvation, at 298 K, including 100 water molecules, has been done using periodic boundary conditions under the minimum image conversion. The energy has been calculated in the pair-potential approach, employing the MCY potential for the H2OH2O interaction and an ab initio analytical potential generated by us for the Fe2+H2O interaction. The examination of interaction energies and of the radial distribution functions clearly show that the first hydration shell is formed by eight water molecules. By classifying the generated configurations into different significant structures of the solvent, it has been found that the eight water molecules of the first hydration shell are situated in a lightly distorted D4d structure which maximizes the water—solute stabilization and minimizes the water—water repulsion. Finally, the validity of our theoretical predictions is discussed.  相似文献   

18.
Structural properties of the hydrated Pb(II) ion have been investigated by ab initio quantum mechanical/molecular mechanical molecular dynamics simulations at Hartree-Fock quantum mechanical level. The first shell coordination number was found to be nine, and several other structural parameters such as angular distribution functions, radial distribution functions, and tilt- and theta-angle distributions allow the full characterization of the hydration structure of the Pb(II) ion.  相似文献   

19.
Hydrated alkali metal ion-phenol complexes were studied to model these species in aqueous solution for M=Na and K. IR predissociation spectroscopy in the O-H stretch region was used to analyze the structures of M+(Phenol)(H2O)n cluster ions, for n = 1-4. The onset of hydrogen bonding was observed to occur at n=4. Ab initio calculations were used to qualitatively explore the types of hydrogen-bonded structures of the M+(Phenol)(H2O)4 isomers. By combining the ab initio calculations and IR spectra, several different structures were identified for each metal ion. In contrast to benzene, detailed in a previous study of Na+(Benzene)n(H2O)m [J. Chem. Phys. 110, 8429 (1999)], phenol is able to bind directly to Na+ even in the presence of four waters. This is likely the result of the sigma-type interaction between the phenol oxygen and the ion. With K+, the dominant isomers are those in which the phenol O-H group is involved in a hydrogen bond with the water molecules, while with Na+, the dominant isomers are those in which the phenol O-H group is free and the water molecules are hydrogen-bonded to each other. Spectra and ab initio calculations for the M+(Phenol)Ar cluster ions for M=Na and K are reported to characterize the free phenol O-H stretch in the M+(Phenol) complex. While pi-type configurations were observed for binary M+(Phenol) complexes, sigma-type configurations appear to dominate the hydrated cluster ions.  相似文献   

20.
A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to investigate solvation structure and dynamics of NH(4) (+) in water. The most interesting region, the sphere includes an ammonium ion and its first hydration shell, was treated at the Hartree-Fock level using DZV basis set, while the rest of the system was described by classical pair potentials. On the basis of detailed QM/MM simulation results, the solvation structure of NH(4) (+) is rather flexible, in which many water molecules are cooperatively involved in the solvation shell of the ion. Of particular interest, the QM/MM results show fast translation and rotation of NH(4) (+) in water. This phenomenon has resulted from multiple coordination, which drives the NH(4) (+) to translate and rotate quite freely within its surrounding water molecules. In addition, a "structure-breaking" behavior of the NH(4) (+) is well reflected by the detailed analysis on the water exchange process and the mean residence times of water molecules surrounding the ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号