首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3‐C3H5)(η5‐C5H5)]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid material. Advanced electron microscopy techniques (including high‐angle annular dark‐field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF‐102 framework. The Pd@COF‐102 hybrid material is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal‐decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal–organic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2–3 through Pd impregnation on COF‐102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.  相似文献   

2.
Covalent organic frameworks as exceptional hydrogen storage materials   总被引:3,自引:0,他引:3  
We report the H2 uptake properties of six covalent organic frameworks (COFs) from first-principles-based grand canonical Monte-Carlo simulations. The predicted H2 adsorption isotherm is in excellent agreement with the only available experimental result (3.3 vs 3.4 wt % at 50 bar and 77 K for COF-5), also reported here, validating the predictions. We predict that COF-105 and COF-108 lead to a reversible excess H2 uptake of 10.0 wt % at 77 K, making them the best known storage materials for molecular hydrogen at 77 K. We predict that the total H2 uptake for COF-108 is 18.9 wt % at 77 K. COF-102 shows the best volumetric performance, storing 40.4 g/L of H2 at 77 K. These results indicate that the COF systems are most promising candidates for practical hydrogen storage.  相似文献   

3.
The organometallic host-guest chemistry of porous covalent organic frameworks is explored by vapour phase infiltration of volatile organometallic precursors; namely, [Fe(η(5)-C(5)H(5))(2)], [Co(η(5)-C(5)H(5))(2)], and [Ru(cod)(cot)]. The unique arrangement of ferrocene molecules inside COF-102 is driven by π-π (host-guest) interactions and replicates the framework symmetry.  相似文献   

4.
The Yaghi laboratory has developed porous covalent organic frameworks (COFs), COF102, COF103, and COF202, and metal-organic frameworks (MOFs), MOF177, MOF180, MOF200, MOF205, and MOF210, with ultrahigh porosity and outstanding H(2) storage properties at 77 K. Using grand canonical Monte Carlo (GCMC) simulations with our recently developed first principles based force field (FF) from accurate quantum mechanics (QM), we calculated the molecular hydrogen (H(2)) uptake at 298 K for these systems, including the uptake for Li-, Na-, and K-metalated systems. We report the total, delivery and excess amount in gravimetric and volumetric units for all these compounds. For the gravimetric delivery amount from 1 to 100 bar, we find that eleven of these compounds reach the 2010 DOE target of 4.5 wt % at 298 K. The best of these compounds are MOF200-Li (6.34) and MOF200-Na (5.94), both reaching the 2015 DOE target of 5.5 wt % at 298 K. Among the undoped systems, we find that MOF200 gives a delivery amount as high as 3.24 wt % while MOF210 gives 2.90 wt % both from 1 to 100 bar and 298 K. However, none of these compounds reach the volumetric 2010 DOE target of 28 g H(2)/L. The best volumetric performance is for COF102-Na (24.9), COF102-Li (23.8), COF103-Na (22.8), and COF103-Li (21.7), all using delivery g H(2)/L units for 1-100 bar. These are the highest volumetric molecular hydrogen uptakes for a porous material under these thermodynamic conditions. Thus, one can obtain outstanding H(2) uptakes with Li, Na, and K doping of simple frameworks constructed from simple, cheap organic linkers. We present suggestions for strategies for synthesis of alkali metal-doped MOFs or COFs.  相似文献   

5.
Palladium nanoparticles (NPs) of different mean particle size have been synthesized in the host structure of the porous coordination polymer (or metal-organic framework: MOF) MIL-101. The metal-organic chemical vapor deposition method was used to load MIL-101 with the Pd precursor complex [(η(5)-C(5)H(5))Pd(η(3)-C(3)H(5))]. Loadings higher than 50 wt.% could be accomplished. Reduction of the Pd precursor complex with H(2) gave rise to Pd NPs inside the MIL-101 (Pd@MIL-101). The reduction conditions, especially the temperature, allows us to make size-conform (size of the Pd NPs correlates with the size of the cavities of the host structure of MIL-101) and undersized Pd NPs. The Pd@MIL-101 samples were characterized by X-ray diffraction, IR spectroscopy, Brauner-Emmett-Teller (BET) analysis, elemental analysis, and transmission electron microscopy (TEM). Catalytic studies, hydrogenation of ketones, were performed with selected Pd@MIL-101 catalysts. Activity, selectivity, and recyclability of the catalyst family are discussed.  相似文献   

6.
Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover   总被引:2,自引:0,他引:2  
The possible utilization of hydrogen as the energy source for fuel-cell vehicles is limited by the lack of a viable hydrogen storage system. Metal-organic frameworks (MOFs) belong to a new class of microporous materials that have recently been shown to be potential candidates for hydrogen storage; however, no significant hydrogen storage capacity has been achieved in MOFs at ambient temperature. Here we report substantially increased hydrogen storage capacities of modified MOFs by using a simple technique that causes and facilitates hydrogen spillover. Thus, the storage of 4 wt % is achieved at room temperature and 100 atm for the modified IRMOF-8. The adsorption is reversible, and the rates are fast. That has made MOFs truly promising for hydrogen storage application.  相似文献   

7.
Covalent organic frameworks (COFs), due to their low-density, high-porosity, and high-stability, have promising applications in gas storage. In this study we have explored the potential of COFs doped with Li and Ca metal atoms for storing hydrogen under ambient thermodynamic conditions. Using density functional theory we have performed detailed calculations of the sites Li and Ca atoms occupy in COF-10 and their interaction with hydrogen molecules. The binding energy of Li atom on COF-10 substrate is found to be about 1.0 eV and each Li atom can adsorb up to three H(2) molecules. However, at high concentration, Li atoms cluster and, consequently, their hydrogen storage capacity is reduced due to steric hindrance between H(2) molecules. On the other hand, due to charge transfer from Li to the substrate, O sites provide additional enhancement for hydrogen adsorption. With increasing concentration of doped metal atoms, the COF-10 substrate provides an additional platform for storing hydrogen. Similar conclusions are reached for Ca doped COF-10.  相似文献   

8.
The stability and bulk properties of two-dimensional boronate ester-linked covalent organic frameworks (COFs) were investigated upon exposure to aqueous environments. Enhanced stability was observed for frameworks with alkylation in the pores of the COF compared to nonalkylated, bare-pore frameworks. COF-18? and COF-5 were analyzed as "bare-pore" COFs, while COF-16? (methyl), COF-14? (ethyl), and COF-11? (propyl) were evaluated as "alkylated-pore" materials. Upon submersion in aqueous media, the porosity of alkylated COFs decreased ~25%, while the nonalkylated COFs were almost completely hydrolyzed, virtually losing all porosity. Similar trends were observed for the degree of crystallinity for these materials, with ~40% decrease for alkylated COFs and 95% decrease for nonalkylated COFs. SEM was used to probe the particle size and morphology for these hydrolyzed materials. Stability tests, using absorbance spectroscopy and (1)H NMR, monitored the release of monomers as the COF degraded. While nonalkylated COFs were stable in organic solvent, hydrolysis was rapid in aqueous environments, more so in basic compared to neutral or acidic aqueous media (minutes to hours, respectively). Notably, alkylation in the pores of COFs slows hydrolysis, exhibiting up to a 50-fold enhancement in stability for COF-11? over COF-18?.  相似文献   

9.
Tri-nuclear allyl-palladium complexes, [Pd(μ-SeCH(2)CH(2)COOR)(η(3)-C(3)H(4)R')](3) (R = H, Me, Et and R' = H, Me), have been synthesized by the reaction of [Pd(2)(μ-Cl)(2)(η(3)-C(3)H(4)R')(2)] with NaSeCH(2)CH(2)COOR. These complexes exist in a dynamic equilibrium with a dimeric form in solution and are fluxional at room temperature as shown by variable temperature (1)H NMR spectroscopy. The DFT calculations indicate that there is a negligible energy difference between the dimer and the trimer, and suggest that the delicate balance between the steric factors and angular strain decides the reaction products. These complexes (with R' = H) on treatment with [Pd(2)(μ-Cl)(2)(η(3)-C(3)H(5))(2)] afforded hetero-bridged complexes [Pd(2)(μ-Cl)(μ-SeCH(2)CH(2)COOR)(η(3)-C(3)H(5))(2)] (R = Me, Et). All the complexes have been characterized by NMR ((1)H, (13)C, (77)Se) spectroscopy. The molecular structure of [Pd(μ-SeCH(2)CH(2)COOEt)(η(3)-C(3)H(5))](3) revealed a chair conformation of the six-membered Pd(3)Se(3) ring, in which all the allyl groups lie at one side of the ring (similar to three axial 1,3,5-hydrogens of cyclohexane). Thermolysis of [Pd(μ-SeCH(2)CH(2)COOEt)(η(3)-C(3)H(5))](n) in diphenyl ether or hexadecylamine (HDA) yielded Pd(7)Se(4) as characterized by powder XRD.  相似文献   

10.
Bimetallic Au-Pd nanoparticles (NPs) were successfully immobilized in the metal-organic frameworks (MOFs) MIL-101 and ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) using a simple liquid impregnation method. The resulting composites, Au-Pd/MIL-101 and Au-Pd/ED-MIL-101, represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage. Au-Pd NPs with strong bimetallic synergistic effects have a much higher catalytic activity and a higher tolerance with respect to CO poisoning than monometallic Au and Pd counterparts.  相似文献   

11.
We have used grand canonical Monte Carlo simulations with a first‐principles‐based force field to show that metal–organic frameworks (MOFs) with Li functional groups (i.e. C? Li bonds) allow for exceptional H2 uptake at ambient temperature. For example, at 298 K and 100 bar, IRMOF‐1‐4Li shows a total H2 uptake of 5.54 wt % and MOF‐200‐27Li exhibits a total H2 uptake of 10.30 wt %, which are much higher than the corresponding values with pristine MOFs. Li‐functionalized MOF‐200 (MOF‐200‐27Li) shows 11.84 wt % H2 binding at 243 K and 100 bar. These hydrogen‐storage capacities exceed the 2015 DOE target of 5.5 wt % H2. Moreover, the incorporation of Li functional groups into MOFs provides more benefits, such as higher delivery amount, for H2 uptake than previously reported Li‐doped MOFs.  相似文献   

12.
金属-有机框架(MOFs)材料是由金属簇节点或金属离子与有机配体连接而成的典型的无机-有机杂合物, 作为一类新兴的无机多孔晶态材料, MOFs因具有高度有序的多孔性、 结构可裁剪性、 高比表面积及灵活多变的骨架类型等优点而在工业合成、 能源开发、 环境治理和生物制药等领域展现出广阔的应用前景. 本文从氢能源的开发利用出发, 总结了近年来MOFs基纳米复合材料在催化化学制氢方面的研究进展. 讨论了常见的含氢量高的化学储氢材料, 包括氨硼烷、 甲酸和水合肼等; 催化材料主要有单一MOFs、 MOF基贵金属和非贵金属复合材料及MOF基衍生材料等. 最后, 对MOF基复合材料在液相催化化学储氢中的应用前景进行了展望.  相似文献   

13.
Monodispersed palladium nanoparticles protected with n-octyl isocyanide were prepared, and their hydrogen absorption behavior was evaluated. The formation of the nanoparticles has been confirmed by means of 1H NMR and elemental analysis. Fourier transform infrared (FT-IR) showed that three distinct bands (2156, 1964, and 1611 cm(-1)) assigned to mono-, double-, and triple-bridged isocyanide ligands on the palladium surface. The average diameter of the particles was estimated to be 2.1 +/- 0.7 nm from observation by transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) analysis revealed that the particles contained Pd(0) with little amounts of Pd(II) or Pd(IV), in sharp contrast to the thiol- or phosphine-stabilized palladium nanoparticles. The absorption and desorption of hydrogen were reversible, and the reactions were much faster for the nanoparticles than for the bulk palladium metal, whereas the storage capacity was almost the same, 0.6 wt %.  相似文献   

14.
The utilization of hydrogen in fuel-cell powered vehicles is limited by the lack of a safe and effective system for hydrogen storage. At the present time, there is no viable storage technology capable of meeting the DOE targets. Porous metal-organic frameworks (MOFs) are novel and potential candidates for hydrogen storage. Until now it is still not possible to achieve any significant hydrogen storage capacity in MOFs at ambient temperature. Here, we report, for the first time, significant amounts of hydrogen storage in MOF-5 and IRMOF-8 at ambient temperature by using a very simple technique via hydrogen dissociation and spillover. Thus, hydrogen uptakes for MOF-5 and IRMOF-8 can be enhanced by a factor of 3.3 and 3.1, respectively (to nearly 2 wt % at 10 MPa and 298 K). Furthermore, the isotherms are totally reversible. These findings suggest that our technique is suitable for hydrogen storage in a variety of MOF materials because of their similar structures as MOF-5 and IRMOF-8.  相似文献   

15.
1,2,4,5-Tetrakis(phenyselenomethyl)benzene (L) has been synthesized by reaction of in situ generated PhSe(-) with 1,2,4,5-tetrakis(bromomethyl)benzene in N(2) atmosphere. Its first bimetallic complexes and a bis-pincer complex having compositions [(η(3)-C(3)H(5))(2)Pd(2)(L)][ClO(4)](2) (1) [Pd(2)(C(5)H(5)N)(2)(L)][BF(4)](2) (2) and [(η(6)-C(6)H(6))(2)Ru(2)(L)Cl(2)][PF(6)](2) (3) have been synthesized by reacting L with [Pd(η(3)-C(3)H(5))Cl](2), [Pd(CH(3)CN)(4)][BF(4)](2) and [(η(6)-C(6)H(6))(2)RuCl(2)](2) respectively. The structures of ligand L and its all three complexes have been determined by X-ray crystallography. In 1 and 3, ligand L forms with two organometallic species seven membered chelate rings whereas in 2 it ligates in a bis-pincer coordination mode. The geometry around Pd in 1 or 2 is close to square planar whereas in 3, Ru has pseudo-octahedral half sandwich "Piano-Stool" geometry. The Pd-Se bond distances are in the ranges 2.4004(9)-2.4627(14) ? and follow the order 1 > 2, whereas Ru-Se bond lengths are between 2.4945(16) and 2.5157(17) ?. The 1 and 2 have been found efficient catalysts for Heck reaction of aryl halides with styrene and methyl acrylate. The 2 is superior to 1. The TON and TOF values (per Pd) are up to ~47500 and ~2639 h(-1) respectively.  相似文献   

16.
In this work, we report a theoretical exploration of the ground-state electronic structures and molecular vibrational properties of a series of binuclear zirconium complexes in the framework of density functional theory (DFT) employing the B3LYP hybrid functional. The calculated results reveal that the electronic structure of the complex [(η^5-C5Me5)2Zr]2(μ^2, η^2, η^2-N2) is unfavorable for hydrogenation due to the exclusion of side-on dinitrogen in the LUMO+ 1 molecular orbital as compared with the reactant 1 [(η^5-C5Me4H)2Zr]2(μ2,η^2,η^2-N2). Besides, the structural feature of the hypothetical intermediate 1′, [(η^5C5Me4H)2Zr]2(μ2,η^2, η^2-N2)-n2, clearly implies the possibility of further hydrogenation. In addition, the distinguishing of vibrational modes of experimental intermediate 2, [(η^5-C5Me4H)2ZrH]2(μ2,η^2,η^2-N2H2), indicates that the asymmetric stretching of Zr-N and Zr-H leads to dissociation. Moreover, the vibrational intensity of Zr-H is stronger than that of Zr-N. Therefore, it can be predicted that excess hydrogen atmosphere is necessary to ensure the dissociation of Zr-N bonds.  相似文献   

17.
Stability of metal-organic frameworks (MOFs) under hydrogen is of particular importance for a diverse range of applications, including catalysis, gas separations, and hydrogen storage. Hydrogen in gaseous form is known to be a strong reducing agent and can potentially react with the secondary building units of a MOF and decompose the porous framework structure. Moreover, rapid pressure swings expected in vehicular hydrogen storage could create significant mechanical stresses within MOF crystals that cause partial or complete pore collapse. In this work, we examined the stability of a structurally representative suite of MOFs by testing them under both static (70 MPa) and dynamic hydrogen exposure (0.5 to 10 MPa, 1000 pressure cycles) at room temperature. We aim to provide stability information for development of near room-temperature hydrogen storage media based on MOFs and suggest framework design rules to avoid materials unstable for hydrogen storage under relevant technical conditions.  相似文献   

18.
Smarter and minimization of devices are consistently substantial to shape the energy landscape. Significant amounts of endeavours have come forward as promising steps to surmount this formidable challenge. It is undeniable that material scientists were contemplating smarter material beyond purely inorganic or organic materials. To our delight, metal-organic frameworks (MOFs), an inorganic-organic hybrid scaffold with unprecedented tunability and smart functionalities, have recently started their journey as an alternative. In this review, we focus on such propitious potential of MOFs that was untapped over a long time. We cover the synthetic strategies and (or) post-synthetic modifications towards the formation of conductive MOFs and their underlying concepts of charge transfer with structural aspects. We addressed theoretical calculations with the experimental outcomes and spectroelectrochemistry, which will trigger vigorous impetus about intrinsic electronic behaviour of the conductive frameworks. Finally, we discussed electrocatalysts and energy storage devices stemming from conductive MOFs to meet energy demand in the near future.  相似文献   

19.
Metal-organic frameworks (MOFs) are thought to be a set of promising hydrogen storage materials; however, little is known about the interactions between hydrogen molecules and pore walls as well as the diffusivities of hydrogen in MOFs. In this work, we performed a systematic molecular simulation study on the adsorption and diffusion of hydrogen in MOFs to provide insight into molecular-level details of the underlying mechanisms. This work shows that metal-oxygen clusters are preferential adsorption sites for hydrogen in MOFs, and the effect of the organic linkers becomes evident with increasing pressure. The hydrogen storage capacity of MOFs is similar to carbon nanotubes, which is higher than zeolites. Diffusion of hydrogen in MOFs is an activated process that is similar to diffusion in zeolites. The information derived in this work is useful to guide the future rational design and synthesis of tailored MOF materials with improved hydrogen adsorption capability.  相似文献   

20.
A tetra(carboxylated) PCP pincer ligand has been synthesized as a building block for porous coordination polymers (PCPs). The air‐ and moisture‐stable PCP metalloligands are rigid tetratopic linkers that are geometrically akin to ligands used in the synthesis of robust metal–organic frameworks (MOFs). Here, the design principle is demonstrated by cyclometalation with PdIICl and subsequent use of the metalloligand to prepare a crystalline 3D MOF by direct reaction with CoII ions and structural resolution by single crystal X‐ray diffraction. The Pd?Cl groups inside the pores are accessible to post‐synthetic modifications that facilitate chemical reactions previously unobserved in MOFs: a Pd?CH3 activated material undergoes rapid insertion of CO2 gas to give Pd?OC(O)CH3 at 1 atm and 298 K. However, since the material is highly selective for the adsorption of CO2 over CO, a Pd?N3 modified version resists CO insertion under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号