首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 INTRODUCTION Synthesis of transition-metal complexes with Schiff-base has been a subject of considerable im- portance[1, 2]. These complexes are not only good coordination agents for Schiff-base, but also good bactericide and antitumour agent[3, 4]. A number of hydroxypyridinones are nontoxic compounds that have been applied in bioinorganic chemistry over many years[5], and their iron(III) complexes have been assessed for the amelioration of anaemia[6]. They have also been examined …  相似文献   

2.
In ferrocene‐1,1′‐diyl­bis­(di­phenyl­methanol)–2,2′‐dipyridyl­amine (1/1), [Fe(C18H15O)2]·C10H9N3, (I), there is an intramolecular O—H?O hydrogen bond [H?O 2.03 Å, O?O 2.775 (2) Å and O—H?O 147°] in the ferrocenediol component, and the two neutral molecular components are linked by one O—H?N hydrogen bond [H?N 1.96 Å, O?N 2.755 (2) Å and O—H?N, 157°] and one N—H?O hydrogen bond [H?O 2.26 Å, N?O 3.112 (2) Å and N—H?O 164°] forming a cyclic R(8) motif. One of the pyridyl N atoms plays no part in the intermolecular hydrogen bonding, but participates in a short intramolecular C—H?N contact [H?N 2.31 Å, C?N 2.922 (2) Å and C—H?N 122°].  相似文献   

3.
1 INTRODUCTION Pyrrole and its derivatives have attracted much attention due to their chemical properties as well as biological activities[1]. They have been widely used to produce pharmaceutical, essences, biochemicals, etc. It has been found that a great number of pyrrole derivatives present antitumor and antiviral activi- ties[2 ~ 5]. During our searches for bioactive com- pounds, a series of pyrrole derivatives were synthe- sized[6, 7]. We report here the synthesis of 3-(pyrrole- 2?-…  相似文献   

4.
1-(4-Chlorophenyl)-3-(4-methylbenzoyl)thiourea was synthesized and characterized by IR,1H and 13C NMR, mass spectroscopy and the elemental analysis. The crystal structure was confirmed from single crystal X-ray diffraction data. It crystallizes in the monoclinic space group P21/c with unit cell dimensions a=12.038(3), b=6.330(6), c=18.912(5) Å and β=100.32(3)°. There is a strong intramolecular hydrogen bond of the type N?H...O, with distance N1...O1=2.659(3) Å. The structure is composed of dimers related by inversion centers. The dimers are formed by intermolecular interactions of the type N?H...S with N...S separation of 3.440(2) Å. The mass fragmentation pattern has also been discussed.  相似文献   

5.
In the series of diaminoenones, large high‐frequency shifts of the 1H NMR of the N? H group in the cis‐position relative to the carbonyl group suggests strong N? H···O intramolecular hydrogen bonding comprising a six‐membered chelate ring. The N? H···O hydrogen bond causes an increase of the 1J(N,H) coupling constant by 2–4 Hz and high‐frequency shift of the 15N signal by 9–10 ppm despite of the lengthening of the relevant N? H bond. These experimental trends are substantiated by gauge‐independent atomic orbital and density functional theory calculations of the shielding and coupling constants in the 3,3‐bis(isopropylamino)‐1‐(aryl)prop‐2‐en‐1‐one (12) for conformations with the Z‐ and E‐orientations of the carbonyl group relative to the N? H group. The effects of the N? H···O hydrogen‐bond on the NMR parameters are analyzed with the atoms‐in‐molecules (AIM) and natural bond orbital (NBO) methods. The AIM method indicates a weakening of the N? H···O hydrogen bond as compared with that of 1,1‐di(pyrrol‐2‐yl)‐2‐formylethene (13) where N? H···O hydrogen bridge establishes a seven‐membered chelate ring, and the corresponding 1J(N,H) coupling constant decreases. The NBO method reveals that the LP(O) →σ*N? H hyperconjugative interaction is weakened on going from the six‐membered chelate ring to the seven‐membered one due to a more bent hydrogen bond in the former case. A dominating effect of the N? H bond rehybridization, owing to an electrostatic term in the hydrogen bonding, seems to provide an increase of the 1J(N,H) value as a consequence of the N? H···O hydrogen bonding in the studied diaminoenones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A combination of intramolecularization and tandem reaction methodologies has been applied to the synthesis of diethylammonium[1-hydroxy-1-(2-hydroxyphenyl)ethyl]phosphonates and -phosphinates, which were found to be unavailable through a standard intermolecular hydrophosphonylation/hydrolysis sequence. A mild hydrolysis of amidophosphites and -phosphonites, bearing 2-acetylphenoxy-fragment and a hydrolytically labile diethylamino-group at the same trivalent phosphorus atom, directly afforded the title compounds. The overall process probably consists of three steps: (i) selective hydrolysis of the P(III)–N bond to generate the hydrophosphoryl-type intermediates; (ii) formation of the strained 2-substituted 3-hydroxy-2-oxo-2,3-dihydro-1,2-benzoxaphospholes through intramolecular Abramov reaction; (iii) hydrolysis of the endocyclic P(IV)–O bond in the 1,2-benzoxaphospholes to give the acyclic products. Being only modestly active in vitro, at high dosage non-toxic water-soluble title α,γ-dihydroxyphosphonates and -phosphinates exhibited beneficial, but short-lasting effect against experimental influenza A infection (H3N2) in mice.  相似文献   

7.
The molecular geometry, the normal mode frequencies and corresponding vibrational assignments, (1)H and (13)C NMR chemical shift values of 8-hydroxy-1-methylquinolinium iodide monohydrate [(C(10)H(10)NO)(+)I(-)H(2)O] in the ground state were performed by HF and B3LYP levels of theory using the LanL2DZ basis set. The optimized bond lengths and bond angles are in good agreement with the X-ray data. The vibrational spectra of the title compound which is calculated by HF and DFT methods, reproduces vibrational wave numbers and intensities with an accuracy which allows reliable vibrational assignments. The title compound [(C(10)H(10)NO)(+)I(-)H(2)O] have been studied theoretically in the 4, 000-200 cm(-1) region and the assignment of all the observed bands were made. The analysis of the infrared spectra indicates that there are some structure-spectra correlations. These methods are proposed as a tool to be applied in the structural characterization of 8-hydroxy-1-methylquinolinium iodide monohydrate [(C(10)H(10)NO)(+)I(-)H(2)O], and thus providing useful support in the interpretation of experimental NMR data.  相似文献   

8.
1 INTRODUCTION Halenia elliptica which is believed to have anti- virus activity[1] has been long used as a medicinal herb to cure hepatic diseases in Qinghai-Tibetan plateau. In this study we aimed at identifying bioactive compounds from the plant. Four …  相似文献   

9.
A new class of carboxylate and sulfonate esters of 1‐hydroxy‐2(1H)‐quinolone has been demonstrated as nonionic photoacid generators (PAGs). Irradiation of carboxylates and sulfonates of 1‐hydroxy‐2(1H)‐quinolone by UV light (λ≥310 nm) resulted in homolysis of weak N? O bond leading to efficient generation of carboxylic and sulfonic acids, respectively. The mechanism for the homolytic N? O bond cleavage was supported by time‐dependent DFT calculations. Photoresponsive 1‐(p‐styrenesulfonyloxy)‐2‐quinolone–methyl methacrylate (SSQL‐MMA) and 1‐(p‐styrenesulfonyloxy)‐2‐quinolone–lauryl acrylate (SSQL‐LA) copolymers were synthesized from PAG monomer 1‐(p‐styrenesulfonyloxy)‐2‐quinolone, and subsequently controlled surface wettability was demonstrated for the above‐mentioned photoresponsive polymers.  相似文献   

10.
According to the 1H and 13C NMR data, bifurcated intramolecular hydrogen bond NH?N?HN in 2,6-bis(2-pyrrolyl)pyridine fixes its molecule in a conformation with syn orientation of the pyrrole rings. An analogous bifurcated hydrogen bond CH?N?HC is formed in 2,6-bis(1-vinyl-2-pyrrolyl)pyridine. 2-(1-Vinyl-2-pyrrolyl)-6-(2-pyrrolyl)pyridine is characterized by unsymmetrical bifurcated hydrogen bond NH? N?HC.  相似文献   

11.
The molecular structure and vibrational spectra of 1-amino-5-benzoyl-4-phenylpyrimidin-2(1H) (C(17)H(13)N(3)O(2)) have been investigated by Hartree-Fock and density functional method using standard B3LYP with 6-31G(d) basis set. The calculated results of the geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) are in very good agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of 1-amino-5-benzoyl-4-phenylpyrimidin-2(1H) (C(17)H(13)N(3)O(2)) and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.  相似文献   

12.
1 INTRODUCTION 2. 1 Physical measurements Azole derivatives, such as pyrazole, imidazole, All solvent and chemicals were commercial rea- triazole(including benzotriazole), tetrazole and indole, gents and used without further purification. Ele- have extensive biological activities. They have be- mental analyses were performed on a PE 1700 CHN come the central focus of studies for agricultural che- auto elemental analyzer. IR spectra were recorded on micals, medicines, plant growth regul…  相似文献   

13.
MP2 study of O? H…N intramolecular hydrogen bond (IMHB) in 3‐imino‐propen‐1‐ol and its derivatives were performed and their IMHB energies were obtained using the related rotamers and open‐close methods. Also the topological properties of electron density distribution and charge transfer energy associated with IMHB were gained by quantum theory of atoms in molecules and natural bond orbital theory, respectively. The computational results reveal that the related rotamers method energies are well correlates with geometrical parameters, topological parameters at hydrogen bond and ring critical points, integrated properties, proton transfer barrier and charge transfer energy of O? H…N unit. Surprisingly, it was found that the open‐close hydrogen bond energies cannot represent good linear correlations with these parameters. Consequently, we extrapolate a number of equations that can be used in estimation of O? H…N IMHB energy in complex biological systems. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

14.
The 1H NMR spectra of perchlorates of N-(pyridyl)amides of 6-methylpicolinic acid N-oxide (PYAP) in CD3CN at 100 MHz show two proton signals belonging to two distinct intramolecular hydrogen bonds. The position of these signals is independent of concentration and temperature. That of the proton of the N? H ?O bond in PYAP is shifted to still lower field than in N-(pyridyl)amides of 6-methylpicolinic acid N-oxide (PYA) due to the inductive effect of the pyridine cation and the formation of another intramolecular hydrogen N+? H ?O bond. The proton of the N+? H ?O bond interacts strongly with its environment and is highly sensitive to traces of water. Presumably, water leads to dissociation of the intramolecular bond.  相似文献   

15.
α‐Halogenoacetanilides (X=F, Cl, Br) were examined as H‐bonding organocatalysts designed for the double activation of C?O bonds through NH and CH donor groups. Depending on the halide substituents, the double H‐bond involved a nonconventional C?H???O interaction with either a H?CXn (n=1–2, X=Cl, Br) or a H?CAr bond (X=F), as shown in the solid‐state crystal structures and by molecular modeling. In addition, the catalytic properties of α‐halogenoacetanilides were evaluated in the ring‐opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α‐dichloro‐ and α‐dibromoacetanilides containing electron‐deficient aromatic groups afforded the most attractive double H‐bonding properties towards C?O bonds, with a N?H???O???H?CX2 interaction.  相似文献   

16.
The structure of 4-hydroxy-4-[1-n-butyl-2-phenyl-2-(diphenylphosphino)ethenyl]-2-methyl-5,5-di-(n-butyl)-1-tert-butyl-1-aza-3-azonia-4-boratacyclopent-2-ene (I), the product of the reaction of the title compounds, has been established by X-ray structure analysis. The heterocycle has an envelope conformation, with the B atom deviating from the plane of four atoms. The distribution of bond lengths in the heterocycle is indicative of a delocalization in the N–C–N fragment. In the crystal, the molecules I form centrosymmetric dimers with the help of the H-bonds N–H...O. The hydroxyl group has a short intramolecular contact to the phosphorus atom, which can be interpreted as the hydrogen bond of the O–H...P type.A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 34, No. 3, pp. 91–95, May–June 1993.Translated by T. Yudanova.  相似文献   

17.
According to the density functional theory calculations, the X···H···N (X?N, O) intramolecular bifurcated (three‐centered) hydrogen bond with one hydrogen donor and two hydrogen acceptors causes a significant decrease of the 1hJ(N,H) and 2hJ(N,N) coupling constants across the N? H···N hydrogen bond and an increase of the 1J(N,H) coupling constant across the N? H covalent bond in the 2,5‐disubsituted pyrroles. This occurs due to a weakening of the N? H···N hydrogen bridge resulting in a lengthening of the N···H distance and a decrease of the hydrogen bond angle at the bifurcated hydrogen bond formation. The gauge‐independent atomic orbital calculations of the shielding constants suggest that a weakening of the N? H···N hydrogen bridge in case of the three‐centered hydrogen bond yields a shielding of the bridge proton and deshielding of the acceptor nitrogen atom. The atoms‐in‐molecules analysis shows that an attenuation of the 1hJ(N,H) and 2hJ(N,N) couplings in the compounds with bifurcated hydrogen bond is connected with a decrease of the electron density ρH···N at the hydrogen bond critical point and Laplacian of this electron density ?2ρH···N. The natural bond orbital analysis suggests that the additional N? H···X interaction partly inhibits the charge transfer from the nitrogen lone pair to the σ*N? H antibonding orbital across hydrogen bond weakening of the 1hJ(N,H) and 2hJ(N,N) trans‐hydrogen bond couplings through Fermi‐contact mechanism. An increase of the nitrogen s‐character percentage of the N? H bond in consequence of the bifurcated hydrogen bonding leads to an increase of the 1J(N,H) coupling constant across the N? H covalent bond and deshielding of the hydrogen donor nitrogen atom. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
According to the (1)H, (13)C and (15)N NMR spectroscopic data and DFT calculations, bifurcated N--H...N and N--H...O intramolecular hydrogen bond is shown to be present in 2-trifluoroacetyl-5-(2'-pyridyl)-pyrrole. This bifurcated hydrogen bond causes an increase in the absolute size of the (1)J(N,H) coupling constant by about 6 Hz, and the deshielding of the bridge proton by 2 ppm. DFT calculations show that the influence of the N--H...N and N--H...O intramolecular hydrogen bonds on the (1)J(N,H) coupling and proton shielding is almost additive, although the components of the bifurcated hydrogen bond slightly weaken each other. In 2-trifluoroacetyl-5-(2'-pyridyl)-pyrrole, the coupling constants involving the fluorine and the N--H covalent bond nuclei depend dramatically on the spatial position of the pyridine ring. The pyridine ring rotation operates as a quantum switch controlling the spin information transfer between the (19)F and (15)N nuclei, as well as the proton.  相似文献   

19.
Pseudomonas aeruginosa produces 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a quorum-sensing (QS) signal that regulates numerous virulence genes including those involved in iron scavenging. Biophysical analysis revealed that 2-alkyl-3-hydroxy-4-quinolones form complexes with iron(III) at physiological pH. The overall stability constant of 2-methyl-3-hydroxy-4-quinolone iron(III) complex was log beta(3) = 36.2 with a pFe(3+) value of 16.6 at pH 7.4. PQS was found to operate via at least three distinct signaling pathways, and its precursor, 2-heptyl-4-quinolone (HHQ), which does not form an iron complex, was discovered to function as an autoinducer molecule per se. When PQS was supplied to a P. aeruginosa mutant unable to make pyoverdine or pyochelin, PQS associated with the cell envelope and inhibited bacterial growth, a finding that reveals a secondary function for PQS in iron entrapment to facilitate siderophore-mediated iron delivery.  相似文献   

20.
It was established that the cytosine·thymine (C·T) mismatched DNA base pair with cis‐oriented N1H glycosidic bonds has propeller‐like structure (|N3C4C4N3| = 38.4°), which is stabilized by three specific intermolecular interactions–two antiparallel N4H…O4 (5.19 kcal mol?1) and N3H…N3 (6.33 kcal mol?1) H‐bonds and a van der Waals (vdW) contact O2…O2 (0.32 kcal mol?1). The C·T base mispair is thermodynamically stable structure (ΔGint = ?1.54 kcal mol?1) and even slightly more stable than the A·T Watson–Crick DNA base pair (ΔGint = ?1.43 kcal mol?1) at the room temperature. It was shown that the C·T ? C*·T* tautomerization via the double proton transfer (DPT) is assisted by the O2…O2 vdW contact along the entire range of the intrinsic reaction coordinate (IRC). The positive value of the Grunenberg's compliance constants (31.186, 30.265, and 22.166 Å/mdyn for the C·T, C*·T*, and TSC·T ? C*·T*, respectively) proves that the O2…O2 vdW contact is a stabilizing interaction. Based on the sweeps of the H‐bond energies, it was found that the N4H…O4/O4H…N4, and N3H…N3 H‐bonds in the C·T and C*·T* base pairs are anticooperative and weaken each other, whereas the middle N3H…N3 H‐bond and the O2…O2 vdW contact are cooperative and mutually reinforce each other. It was found that the tautomerization of the C·T base mispair through the DPT is concerted and asynchronous reaction that proceeds via the TSC·T ? C*·T* stabilized by the loosened N4? H? O4 covalent bridge, N3H…N3 H‐bond (9.67 kcal mol?1) and O2…O2 vdW contact (0.41 kcal mol?1). The nine key points, describing the evolution of the C·T ? C*·T* tautomerization via the DPT, were detected and completely investigated along the IRC. The C*·T* mispair was revealed to be the dynamically unstable structure with a lifetime 2.13·× 10?13 s. In this case, as for the A·T Watson–Crick DNA base pair, activates the mechanism of the quantum protection of the C·T DNA base mispair from its spontaneous mutagenic tautomerization through the DPT. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号