首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectra and angular distributions have been measured for the light particles emitted from the reactions induced by 36 MeV 6Li and 7Li ions on targets of 12C, 13C and 27Al. Some measurements were also performed at beam energies of 28 and 32 MeV. The spectra are dominated by broad peaks centered at energies corresponding to the beam velocity, a characteristic of projectile breakup. A simple breakup model roughly reproduces the shapes of the measured spectra and angular distributions. The total cross sections observed for projectile breakup average about 600 mb and are almost as large as the fusion cross sections. The 7Li breakup yields are somewhat larger than those for 6Li, the same trend that was previously observed for the Li-induced fusion cross sections on C. As a result the measured total reaction cross sections induced by 7Li ions are about 200 mb larger than those of 6Li on the same targets. This difference is not predicted by conventional optical model calculations.  相似文献   

2.
Elastic scattering angular distributions have been measured for 7Be + 9Be system at Elab = 17, 19 and 21 MeV in the angular range θcm=26–58°, and for 7Li + 9Be system at Elab= 15.75, 24 and 30 MeV. An optical model (OM) analysis of these data have been carried out. For the 7Li + 9Be system fusion cross sections were obtained at Elab = 15.75, 24 and 30 MeV by measuring the α-evaporation spectra from the compound nucleus at backward angles. The measured α-evaporation spectra were reproduced by the statistical model calculations and fusion cross sections were extracted therefrom. The ratios of the experimental fusion cross sections to the total reaction cross sections (obtained form OM analysis) were found to be rather small. This result suggests that break-up process has a strong influence on fusion process leading to a reduction in fusion cross section.  相似文献   

3.
A measurement of the residues from the 12C + 7Li reaction has been obtained for 7Li energies from 10 to 38 MeV. From these measurements the fusion cross sections and critical angular momenta for the 12C + 7Li system have been deduced. Cross sections for the 7Li(12C, t)16O reaction have been obtained for 12C energies from 54 to 62 MeV at θlab = 2.7°. The critical angular momenta obtained from the fusion cross sections have been used to perform Hauser-Feshbach calculations for the 12C(7Li, t)16O reaction. These calculations have been compared to measured angular distributions over a wide energy range. By comparing the fusion cross sections required by the Hauser-Feshbach calculations to fit the 12C(7Li, t)16O(8.87 MeV) reaction and the measured residue cross section it is estimated that at least 80 % of the measured residues are fusion products. The calculations also indicate that direct processes dominate the population of many 16O levels at forward angles and the 10.35 MeV state at backward angles. The necessity for using a critical angular momentum in Hauser-Feshbach calculations is discussed.  相似文献   

4.
The elastic and inelastic scattering of protons from 6Li has been studied at incident energies of 25.9, 29.9, 35.0, 40.1 and 45.4 MeV. The 2.18 MeV (3+, T = 0) first excited state of 6Li was found to be strongly excited, but the 3.56 MeV (0+, T = 1) second excited state was quite weakly excited. Angular distributions for excitation of the 2.18 MeV level were measured at all five energies, while angular distributions for excitation of the 3.56 MeV level were extracted only at 25.9 and 45.4 MeV. To test the applicability of the optical model for the scattering of protons from such a light nucleus the elastic scattering angular distributions have been analyzed using the eleven-parameter search code SEEK. Available polarization angular distributions were included in the analysis. Reasonable fits to the data have been obtained with an average geometry potential. Theoretical estimates of the real part of the optical potential and the inelastic scattering differential cross sections have been made using the microscopic model for proton-nucleus scattering. Both phenomenological and realistic forces have been considered and the necessary nuclear transition densities have been extracted from experimental elastic and inelastic electron scattering data. An estimate of a possible spin-spin term in the optical potential has also been made.  相似文献   

5.
The angular distributions of the energy spectra of the light charged particles (p, d and α) from the 9Be + 28Si reaction have been measured in the energy range 12 ≦ Elab ≦ 30 MeV. The particle evaporation spectra and the angular distributions were analyzed with a spin dependent statistical model. Angular distributions of 9Be ions elastically scattered on 28Si have been measured at the energies 12 MeV, 17 MeV, 23 MeV and 30 MeV and were analysed, together with previously measured cross sections, with the optical model. The fusion cut-off angular momentum lfus(E), the fusion cross section σfus(E) and the ratio σfus/σROM(E) were deduced. The excitation function for fusion was analyzed with the Glas and Mosel model. The parameters obtained from the fusion excitation function were compared with the corresponding ones from the 9Be + 28Si optical-model interaction potential.  相似文献   

6.
In a coincidence experiment, two excitation functions (0cm=60° and 90°) and four angular distributions of the differential cross section for the elastic scattering of6Li on6Li were measured. The energy range for the excitation functions was from 2 to 10 MeV (CM), the angular distributions were taken at CM-energies of 4, 5, 6, 7.25 MeV. Optical model calculations were performed. It is shown that the outer portion of the potentials is most important for reproducing the experimental data.  相似文献   

7.
Absolute elastic cross sections have been measured at 12.45°, 16.45°, 20.45° and 28.0° for targets of 9Be, 12C, 16O, 28Si and 197Au being bombarded by beams of 13 MeV 6,7Li and 24 MeV 16O. The reliability of a method previously proposed for low mass multielemental analysis [1,2] depends to some extent on the precision and accuracy of the cross sections reported here. The 16O-beam reactions, except the 16O + 9Be reaction, are found to be consistent with the Rutherford predictions. This allows us to obtain target thickness independent cross sections with uncertainties of approximately 7% for the reactions initiated with 6,7Li beams. Most of these cross sections are found to be non-Rutherford. Comparisons made with previous investigations give strong support to the cross section values obtained in this work.  相似文献   

8.
Elastic scattering differential cross sections for the interaction of 100 MeV protons with 24Mg and 28Si have been measured using a high-resolution Ge(Li) spectrometer to resolve the inelastic scattering contribution to the elastic peak. The results have been analysed using the conventional optical model, and the experimental differential cross sections and total reaction cross section are excellently reproduced. The results agree with previous analyses of the elastic scattering of 100 MeV protons on 1p shell nuclei in that no set of geometric parameters can provide a quantitative fit to both nuclei. It is observed, however, that the fluctuations of the optical-model parameters for optimum fits are decreased over the fluctuations observed for the 1p shell nuclei. The present results combined with previous optical-model analyses on 24Mg and 28Si at 50 MeV and 40 MeV respectively, are found to be consistent with an energy dependence of dV/dE ≈ −0.3 for the depth of the real central potential in agreement with other, more extensive, investigations of the energy dependence for protons elastically scattered from 16O and 40Ca.  相似文献   

9.
At an energy of 25 MeV and in the angular range 7°−175° in the laboratory frame, angular distributions were measured for elastic deuteron scattering on 6Li nuclei and for the respective inelastic-scattering processes accompanied by the transitions to the ground state (1+) of the 6Li nucleus and to its excited state at E x = 2.186 MeV (J π = 3+). The resulting data were analyzed on the basis of the optical model of the nucleus and the coupled-reaction-channel method with allowance for the mechanism of alpha-particle-cluster exchange. It is shown that only upon including, in the analysis, channel coupling and the exchange mechanism can the experimental cross sections for elastic and inelastic scattering be reproduced over the entire range of angles.  相似文献   

10.
The energy dependence of the total cross sections for the 6He + Si and 9Li + Si reactions was measured at beam energies between 5 and 20 MeV per nucleon. The results agree with experimental data published for the 6He + Si reaction. New data are obtained for the 9Li + Si reaction in the vicinity of a local enhancement of the total cross section. A theoretical analysis of the possible reasons behind the appearance of this peculiarity in the case of collisions of 6He and 9Li nuclei with silicon target nuclei is performed. In particular, the enhancement may owe its origin to the effect of loosely bound projectile nucleons.  相似文献   

11.
Based on the new measurements of total, nonelastic, elastic cross section and elastic scattering angular distributions for n+U reactions, a set of neutron optical model potential parameters is obtained in the region of incident neutron energy from 0.1 to 20 MeV. The cross sections, angular distributions, energy spectra and double differential cross sections are calculated and analyzed by optical model, nuclear fission theory, distorted wave Born approximation theory, coupled channel theory, the unified Hauser-Feshbach theory, as well as exciton model. The results indicate that our theoretical model can reasonably analysis n+ 238U reaction data with neutron energy lower than 20 MeV.  相似文献   

12.
Based on the experimental data of the total, the nonelastic and the elastic cross sections and the elastic scattering angular distributions for n+58Ni reactions, a set of parameters for a neutron optical model potential is obtained in the incident neutron energy region from 0.8—150MeV. Then reaction cross sections, angular distributions, energy spectra, gamma-ray production cross sections and gamma-ray production energy spectra are calculated in terms of the optical model, the distorted wave Born approximation theory, the Hauser-Feshbach theory, the exciton model and the cascade mechanism inside nuclear. The results are analyzed and compared with the existing experimental data and other evaluated data from ENBF/B-6. They are in agreement with each other within error bars.  相似文献   

13.
The reaction 13C(6Li, t)16O has been studied in the incident energy range 24–26 MeV. Complete angular distributions have been measured at E6Li, = 25 MeV in the angular range θlab = 8°–172°, with the reaction 6Li(13C, t)6O being used for the backward angle measurements. Cross sections for evaporation residues from the fusion of the 6Li + 13C system have been measured in the incident 6Li energy range 9.2–35.1 MeV. Compound nuclear contributions to the transfer cross sections have been calculated using the Hauser-Feshbach statistical theory with the assumption that the compound-nucleus formation cross section is equal to the measured fusion cross section. By comparison of the compound nuclear calculations with backward angle data it is found that the sharp cutoff approximation commonly used to represent the initial angular momentum distribution of the compound nucleus is not adequate for the 13C(6Li, t)16O reaction. Good fits to the backward angle data can be obtained by using a smooth cutoff approximation. The forward angle cross sections have been compared with exact finite-range distorted-wave Born approximation calculations to extract transferred angular momenta and spectroscopic strengths. The present results differ from those of an earlier study. These differences are due to the inclusion of forward angle data in the present study.  相似文献   

14.
The partial production cross sections for reaction residues produced by the fusion of 16O with 16O have been measured at Ec.m = 9–30 MeV by detecting the characteristic γ-rays with a Ge(Li) detector. The dominant products are 24Mg and 27A1 corresponding to 2α and αp emission from the compound nucleus, respectively. The total γ-producing cross sections σR were also derived by summing the partial cross sections after correction for the observed (average) γ-ray angular distributions. The trend in the total cross sections is very similar to the trends derived from an optical model or a statistical-evaporation model calculation. The partial production cross sections were compared with other experimental results at 11.9 MeV and 30 MeV and with the results of the statistical-model calculation. It is concluded that the treatment of angular momentum in the calculation is inadequate for describing the partial cross sections. Structure in the partial and total cross section excitation functions is observed with minima occurring at Ec.m. = 27, 24, 20, 17.5, and possibly 15 MeV. Some of this structure is well established by the statistical accuracy of the data and most, but perhaps not all of it, is correlated in the various channels. This structure is compared with that observed in another experiment and some of its implications are discussed.  相似文献   

15.
Amicroscopic optical potential is used to calculate cross sections for elastic 11Li +p scattering at the energies of 62, 68.4, and 75 MeV per nucleon, and the results are compared with available experimental data. The potential used does not involve free parameters, but the depths of its real and imaginary parts are renormalized. The known trend in the energy dependence of the volume integrals of the optical potential is taken into account in analyzing experimental data. The role of spin-orbit interaction is studied, and the total reaction cross sections that are proposed to be measured in future experiments are calculated.  相似文献   

16.
New results on the energy dependence of the total cross section (σ R) for 6He scattering on 28Si in the incident energy range 10–28 MeV/A are obtained. The α-particle-production cross sections for the 28Si(6He, 4He)X channel are measured as well. The secondary beam of 6He with an intensity of up to 5×104 particle/s was generated by bombarding a thick beryllium target with ~32-MeV/A 7Li ions. In the energy region below 17 MeV/A, σ R increases sharply. The experimental dependences of the total cross sections are compared with the results of σ R calculations using the double-folding potential within the optical model. The energy dependence of σ R for 6He differs from that for the neighboring nuclei, which can be associated with the structural features of the former nucleus. The energy spectra of α particles produced in the 6He interactions with silicon indicate two mechanisms of their production: transfer reaction and 6He breakup in the field of the 28Si nucleus.  相似文献   

17.
Neutron total cross sections of 6Li are measured at intervals of ? 10 keV from ≈ 0.1 to 4.8 MeV with precisions of ≈ 1 to 3 %. Differential elastic scattering cross sections are measured at intervals of ? 100 keV from 1.5 to 4.0 MeV at 10 or more scattering angles distributed between ≈ 20 and 160 deg. Differential inelastic scattering cross sections are measured at selected angles in the energy range 3.5 to 4.0 MeV. The experimental results are analyzed in terms of R-matrix theory and the model parameters used to deduce the 6Li(n,α) cross sections. The implications of the measurements and their interpretation on the level structure of 7Li and the reaction mechanisms are discussed.  相似文献   

18.
We construct a new global optical model potential to describe the elastic scattering of 12C. The experimental data of elastic-scattering angular distributions and total reaction cross sections for targets from 24Mg to 209Bi are considered below 200 MeV within the framework of the optical model. The results calculated using the derived global optical potential are then compared with the existing experimental data. The reliability of the global optical potential is further tested by predicting the elastic scattering data out of the mass and energy ranges, within which the global potential parameters are determined, and reasonable results are also obtained.  相似文献   

19.
Based on experimental data of total, nonelastic, elastic cross section and elastic scattering angular distributions for n+Pb reactions, a set of neutron optical model potential parameters is obtained in the region of incident neutron energy from 1—300 MeV. The cross sections, angular distributions and energy spectra are calculated and analyzed by optical model, distorted wave Born approximation theory, Hauser-Feshbach theory, exciton model and cascade mechanism inside nuclear. The results indicate that the cross sections can be given for n+ 208Pb reactions which are all in good agreement with experimental data.  相似文献   

20.
《Nuclear Physics A》1986,448(2):315-321
Angular distributions have been measured for the 6Li(e, d0) reaction in the excitation energy range 10–28 MeV. The differential cross sections are decomposed into E1 and E2 components on the basis of a simple cluster model. The E2 strength deduced using a virtual photon spectrum is spread over the entire energy region studied. This strength reflects isoscalar E2 excitations in 6Li. The E1 strength, which results from isospin mixing, shows no significant structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号