首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
Let \(X\) be a compact Kähler manifold of dimension \(k\!\le \! 4\) and \(f{:}X\!\rightarrow \! X\) a pseudo-automorphism. If the first dynamical degree \(\lambda _1(f)\) is a Salem number, we show that either \(\lambda _1(f)=\lambda _{k-1}(f)\) or \(\lambda _1(f)^2=\lambda _{k-2}(f)\) . In particular, if \({\dim }(X)=3\) then \(\lambda _1(f)=\lambda _2(f)\) . We use this to show that if \(X\) is a complex 3-torus and \(f\) is an automorphism of \(X\) with \(\lambda _1(f)>1\) , then \(f\) has a non-trivial equivariant holomorphic fibration if and only if \(\lambda _1(f)\) is a Salem number. If \(X\) is a complex 3-torus having an automorphism \(f\) with \(\lambda _1(f)=\lambda _2(f)>1\) but is not a Salem number, then the Picard number of \(X\) must be 0, 3 or 9, and all these cases can be realized.  相似文献   

3.
The first aim of this paper is to illustrate numerically that the Dirichlet-to-Neumann semigroup represented by P. Lax acts as a magnifying glass. In this perspective, we used the finite element method for discretizing of the correspondent boundary dynamical system using the implicit and explicit Euler schemes. We prove by using the Chernoff’s Theorem that the implicit and explicit Euler methods converge to the exact solution and we use the (P1)-finite elements to illustrate this convergence through a FreeFem++ implementation which provides a movie available online. In the Dirichlet-to-Neumann semigroup represented by P. Lax the conductivity \(\gamma \) is the identity matrix \(I_n\) , but for a different conductivity \(\gamma \) , the authors of Cornean et al. (J Inverse Ill-posed Prob 12:111–134, 2006) supplied an estimation of the operator norm of the difference between the Dirichlet-to-Neumann operator \(\Lambda _\gamma \) and \(\Lambda _1\) , when \(\gamma =\beta I_n\) and \(\beta =1\) near the boundary \(\partial \Omega \) (see Lemma 2.1). We will use this result to estimate the accuracy between the correspondent Dirichlet-to-Neumann semigroup and the Lax semigroup, for \(f\in H^{1/2}(\partial \Omega )\) .  相似文献   

4.
Let \(G\) be a connected Lie group and \(S\) a generating Lie semigroup. An important fact is that generating Lie semigroups admit simply connected covering semigroups. Denote by \(\widetilde{S}\) the simply connected universal covering semigroup of \(S\) . In connection with the problem of identifying the semigroup \(\Gamma (S)\) of monotonic homotopy with a certain subsemigroup of the simply connected covering semigroup \(\widetilde{S}\) we consider in this paper the following subsemigroup $$\begin{aligned} \widetilde{S}_{L}=\overline{\left\langle \mathrm {Exp}(\mathbb {L} (S))\right\rangle } \subset \widetilde{S}, \end{aligned}$$ where \(\mathrm {Exp}:\mathbb {L}(S)\rightarrow S\) is the lifting to \( \widetilde{S}\) of the exponential mapping \(\exp :\mathbb {L}(S)\rightarrow S\) . We prove that \(\widetilde{S}_{L}\) is also simply connected under the assumption that the Lie semigroup \(S\) is right reversible. We further comment how this result should be related to the identification problem mentioned above.  相似文献   

5.
Let \(\mathfrak {g}\) be a symmetrizable Kac-Moody Lie algebra with the standard Cartan subalgebra \(\mathfrak {h}\) and the Weyl group \(W\) . Let \(P_+\) be the set of dominant integral weights. For \(\lambda \in P_+\) , let \(L(\lambda )\) be the integrable, highest weight (irreducible) representation of \(\mathfrak {g}\) with highest weight \(\lambda \) . For a positive integer \(s\) , define the saturated tensor semigroup as $$\begin{aligned} \Gamma _s:= \{(\lambda _1, \dots , \lambda _s,\mu )\in P_+^{s+1}: \exists \, N\ge 1 \,\text {with}\,L(N\mu )\subset L(N\lambda _1)\otimes \dots \otimes L(N\lambda _s)\}. \end{aligned}$$ The aim of this paper is to begin a systematic study of \(\Gamma _s\) in the infinite dimensional symmetrizable Kac-Moody case. In this paper, we produce a set of necessary inequalities satisfied by \(\Gamma _s\) . These inequalities are indexed by products in \(H^*(G^{\mathrm{min }}/B; \mathbb {Z})\) for \(B\) the standard Borel subgroup, where \(G^{\mathrm{min }}\) is the ‘minimal’ Kac-Moody group with Lie algebra \(\mathfrak {g}\) . The proof relies on the Kac-Moody analogue of the Borel-Weil theorem and Geometric Invariant Theory (specifically the Hilbert-Mumford index). In the case that \(\mathfrak {g}\) is affine of rank 2, we show that these inequalities are necessary and sufficient. We further prove that any integer \(d>0\) is a saturation factor for \(A^{(1)}_1\) and 4 is a saturation factor for \(A^{(2)}_2\) .  相似文献   

6.
Let \(S_{\alpha ,\psi }(f)\) be the square function defined by means of the cone in \({\mathbb R}^{n+1}_{+}\) of aperture \(\alpha \) , and a standard kernel \(\psi \) . Let \([w]_{A_p}\) denote the \(A_p\) characteristic of the weight \(w\) . We show that for any \(1<p<\infty \) and \(\alpha \ge 1\) , $$\begin{aligned} \Vert S_{\alpha ,\psi }\Vert _{L^p(w)}\lesssim \alpha ^n[w]_{A_p}^{\max \left( \frac{1}{2},\frac{1}{p-1}\right) }. \end{aligned}$$ For each fixed \(\alpha \) the dependence on \([w]_{A_p}\) is sharp. Also, on all class \(A_p\) the result is sharp in \(\alpha \) . Previously this estimate was proved in the case \(\alpha =1\) using the intrinsic square function. However, that approach does not allow to get the above estimate with sharp dependence on \(\alpha \) . Hence we give a different proof suitable for all \(\alpha \ge 1\) and avoiding the notion of the intrinsic square function.  相似文献   

7.
The paper deals with standing wave solutions of the dimensionless nonlinear Schrödinger equation where the potential \(V_\lambda :\mathbb {R}^N\rightarrow \mathbb {R}\) is close to an infinite well potential \(V_\infty :\mathbb {R}^N\rightarrow \mathbb {R}\) , i. e. \(V_\infty =\infty \) on an exterior domain \(\mathbb {R}^N\setminus \Omega \) , \(V_\infty |_\Omega \in L^\infty (\Omega )\) , and \(V_\lambda \rightarrow V_\infty \) as \(\lambda \rightarrow \infty \) in a sense to be made precise. The nonlinearity may be of Gross–Pitaevskii type. A standing wave solution of \((NLS_\lambda )\) with \(\lambda =\infty \) vanishes on \(\mathbb {R}^N\setminus \Omega \) and satisfies Dirichlet boundary conditions, hence it solves We investigate when a standing wave solution \(\Phi _\infty \) of the infinite well potential \((NLS_\infty )\) gives rise to nearby solutions \(\Phi _\lambda \) of the finite well potential \((NLS_\lambda )\) with \(\lambda \gg 1\) large. Considering \((NLS_\infty )\) as a singular limit of \((NLS_\lambda )\) we prove a kind of singular continuation type results.  相似文献   

8.
For three coadjoint orbits \(\mathcal {O}_1, \mathcal {O}_2\) and \(\mathcal {O}_3\) in \(\mathfrak {g}^*\) , the Corwin–Greenleaf function \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) is given by the number of \(G\) -orbits in \(\{(\lambda , \mu ) \in \mathcal {O}_1 \times \mathcal {O}_2 \, : \, \lambda + \mu \in \mathcal {O}_3 \}\) under the diagonal action. In the case where \(G\) is a simple Lie group of Hermitian type, we give an explicit formula of \(n(\mathcal {O}_1 \times \mathcal {O}_2, \mathcal {O}_3)\) for coadjoint orbits \(\mathcal {O}_1\) and \(\mathcal {O}_2\) that meet \(\left( [\mathfrak {k}, \mathfrak {k}] + \mathfrak {p}\right) ^{\perp }\) , and show that the formula is regarded as the ‘classical limit’ of a special case of Kobayashi’s multiplicity-free theorem (Progr. Math. 2007) in the branching law to symmetric pairs.  相似文献   

9.
It was proved recently that a super-simple orthogonal array (SSOA) of strength \(t\) and index \(\lambda \ge 2\) is equivalent to a minimum detecting array (DTA). In computer software tests in component-based systems, such a DTA can be used to generate test suites that are capable of locating \(d=\lambda -1\) \(t\) -way interaction faults and detect whether there are more than \(d\) interaction faults. It is proved in this paper that an SSOA of strength \(t=3\) , index \(\lambda \ge 2\) and degree \(k=5\) , or an SSOA \(_{\lambda }(3,5,v)\) , exists if and only if \(\lambda \le v\) excepting possibly a handful of cases.  相似文献   

10.
We consider Monge–Kantorovich problems corresponding to general cost functions \(c(x,y)\) but with symmetry constraints on a Polish space \(X\times X\) . Such couplings naturally generate anti-symmetric Hamiltonians on \(X\times X\) that are \(c\) -convex with respect to one of the variables. In particular, if \(c\) is differentiable with respect to the first variable on an open subset \(X\) in \( \mathbb {R}^d\) , we show that for every probability measure \(\mu \) on \(X\) , there exists a symmetric probability measure \(\pi _0\) on \(X\times X\) with marginals \(\mu \) , and an anti-symmetric Hamiltonian \(H\) such that \(\nabla _2H(y, x)=\nabla _1c(x,y)\) for \( \pi _0\) -almost all \((x,y) \in X \times X.\) If \(\pi _0\) is supported on a graph \((x, Sx)\) , then \(S\) is necessarily a \(\mu \) -measure preserving involution (i.e., \(S^2=I\) ) and \(\nabla _2H(x, Sx)=\nabla _1c(Sx,x)\) for \(\mu \) -almost all \(x \in X.\) For monotone cost functions such as those given by \(c(x,y)=\langle x, u(y)\rangle \) or \(c(x,y)=-|x-u(y)|^2\) where \(u\) is a monotone operator, \(S\) is necessarily the identity yielding a classical result by Krause, namely that \(u(x)=\nabla _2H(x, x)\) where \(H\) is anti-symmetric and concave-convex.  相似文献   

11.
Consider a multivalued formal function of the type 1 $$\begin{aligned} \varphi (s) : = \sum _{j=0}^k\,c_j(s).s^{\lambda + m_j}.(\mathrm{Log}\,s)^j, \end{aligned}$$ where \(\lambda \) is a positive rational number, \(c_j\) is in \({{\mathrm{\mathbb {C}}}}[[s]]\) and \(m_j \in \mathbb {N}\) for \(j \in [0,k-1]\) . The theme associated with such a \(\varphi \) is the “minimal filtered integral equation” satisfied by \(\varphi \) , in a sense which is made precise in this article. We study such objects and show that their isomorphism classes may be characterized by a finite set of complex numbers, when we assume the Bernstein polynomial of \(\varphi \) to be fixed. For a given \(\lambda \) , to fix the Bernstein polynomial is equivalent to fix a finite set of integers associated with the logarithm of the monodromy in the geometric situation described below. Our aim is to construct some analytic invariants, for instance in the following situation, let \(f : X \rightarrow D\) be a proper holomorphic function defined on a complex manifold \(X\) with values in a disc \(D\) . We assume that the only critical value is \(0 \in D\) and we consider this situation as a degenerating family of compact complex manifolds to a singular compact complex space \(f^{-1}(0)\) . To a smooth \((p+1)\) -form \(\omega \) on \(X\) such that \(\mathrm{d}\omega = 0 = \mathrm{d}f \wedge \omega \) and to a vanishing \(p\) -cycle \(\gamma \) chosen in the generic fiber \(f^{-1}(s_0), s_0 \in D \setminus \{0\}\) , we associated a “vanishing period” \(F_{\gamma }(s) : = \int _{\gamma _s} \omega \big /\mathrm{d}f \) which has an asymptotic expansion at \(0\) of the form \((1)\) above, when \(\gamma \) is chosen in the spectral subspace of \(H_p(f^{-1}(s_0), {{\mathrm{\mathbb {C}}}})\) for the eigenvalue \(\mathrm{e}^{2i\pi .\lambda }\) of the monodromy of \(f\) . Here \((\gamma _s)_{s \in D^*}\) is the horizontal multivalued family of \(p\) -cycles in the fibers of \(f\) obtained from the choice of \(\gamma \) . The aim of this article was to study the module generated by such a \(\varphi \) over the algebra \(\tilde{\mathcal {A}}\) , which is the \(b\) -completion of the algebra \(\mathcal {A}\) generated by the operators \(\mathrm{a} : = \times s\) and \(\mathrm{b} : = \int _{0}^{s}\) .  相似文献   

12.
This article studies commutative orders, that is, commutative semigroups having a semigroup of quotients. In a commutative order \(S\) , the square-cancellable elements \(\mathcal {S}(S)\) constitute a well-behaved separable subsemigroup. Indeed, \(\mathcal {S}(S)\) is also an order and has a maximum semigroup of quotients \(R\) , which is Clifford. We present a new characterisation of commutative orders in terms of semilattice decompositions of \(\mathcal {S}(S)\) and families of ideals of \(S\) . We investigate the role of tensor products in constructing quotients, and show that all semigroups of quotients of \(S\) are homomorphic images of the tensor product \(R\otimes _{\mathcal {S}(S)} S\) . By introducing the notions of generalised order and semigroup of generalised quotients, we show that if \(S\) has a semigroup of generalised quotients, then it has a greatest one. For this we determine those semilattice congruences on \(\mathcal {S}(S)\) that are restrictions of congruences on \(S\) .  相似文献   

13.
In this paper, we study the global boundary regularity of the \(\bar{\partial }\) - equation on an annulus domain \(\Omega \) between two strictly \(q\) -convex domains with smooth boundaries in \(\mathbb{C }^n\) for some bidegree. To this finish, we first show that the \(\bar{\partial }\) -operator has closed range on \(L^{2}_{r, s}(\Omega )\) and the \(\bar{\partial }\) -Neumann operator exists and is compact on \(L^{2}_{r,s}(\Omega )\) for all \(r\ge 0\) , \(q\le s\le n-q- 1\) . We also prove that the \(\bar{\partial }\) -Neumann operator and the Bergman projection operator are continuous on the Sobolev space \(W^{k}_{r,s}(\Omega )\) , \(k\ge 0\) , \(r\ge 0\) , and \(q\le s\le n-q-1\) . Consequently, the \(L^{2}\) -existence theorem for the \(\bar{\partial }\) -equation on such domain is established. As an application, we obtain a global solution for the \(\bar{\partial }\) equation with Hölder and \(L^p\) -estimates on strictly \(q\) -concave domain with smooth \(\mathcal C ^2\) boundary in \(\mathbb{C }^n\) , by using the local solutions and applying the pushing out method of Kerzman (Commun Pure Appl Math 24:301–380, 1971).  相似文献   

14.
The large rank of a finite semigroup \(\Gamma \) , denoted by \(r_5(\Gamma )\) , is the least number \(n\) such that every subset of \(\Gamma \) with \(n\) elements generates \(\Gamma \) . Howie and Ribeiro showed that \(r_5(\Gamma ) = |V| + 1\) , where \(V\) is a largest proper subsemigroup of \(\Gamma \) . This work considers the complementary concept of subsemigroups, called prime subsets, and gives an alternative approach to find the large rank of a finite semigroup. In this connection, the paper provides a shorter proof of Howie and Ribeiro’s result about the large rank of Brandt semigroups. Further, this work obtains the large rank of the semigroup of order-preserving singular selfmaps.  相似文献   

15.
Yu, Wang, Wu and Ye call a semigroup \(S\) \(\tau \) -congruence-free, where \(\tau \) is an equivalence relation on \(S\) , if any congruence \(\rho \) on \(S\) is either disjoint from \(\tau \) or contains \(\tau \) . A congruence-free semigroup is then just an \(\omega \) -congruence-free semigroup, where \(\omega \) is the universal relation. They determined the completely regular semigroups that are \(\tau \) -congruence-free with respect to each of the Green’s relations. The goal of this paper is to extend their results to all regular semigroups. Such a semigroup is \(\mathrel {\mathcal {J}}\) -congruence-free if and only if it is either a semilattice or has a single nontrivial \(\mathrel {\mathcal {J}}\) -class, \(J\) , say, and either \(J\) is a subsemigroup, in which case it is congruence-free, or otherwise its principal factor is congruence-free. Given the current knowledge of congruence-free regular semigroups, this result is probably best possible. When specialized to completely semisimple semigroups, however, a complete answer is obtained, one that specializes to that of Yu et al. A similar outcome is obtained for \(\mathrel {\mathcal {L}}\) and \(\mathrel {\mathcal {R}}\) . In the case of \(\mathrel {\mathcal {H}}\) , only the completely semisimple case is fully resolved, again specializing to those of Yu et al.  相似文献   

16.
Graph coloring is an important tool in the study of optimization, computer science, network design, e.g., file transferring in a computer network, pattern matching, computation of Hessians matrix and so on. In this paper, we consider one important coloring, vertex coloring of a total graph, which is familiar to us by the name of “total coloring”. Total coloring is a coloring of \(V\cup {E}\) such that no two adjacent or incident elements receive the same color. In other words, total chromatic number of \(G\) is the minimum number of disjoint vertex independent sets covering a total graph of \(G\) . Here, let \(G\) be a planar graph with \(\varDelta \ge 8\) . We proved that if for every vertex \(v\in V\) , there exists two integers \(i_{v},j_{v} \in \{3,4,5,6,7,8\}\) such that \(v\) is not incident with intersecting \(i_v\) -cycles and \(j_v\) -cycles, then the vertex chromatic number of total graph of \(G\) is \(\varDelta +1\) , i.e., the total chromatic number of \(G\) is \(\varDelta +1\) .  相似文献   

17.
Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2xnis also called the cone Laplacian. In this paper,by using Mellin-Fourier transform,we prove thatλk Cnk2 n for any k 1,where Cn=(nn+2)(2π)2(|B0|Bn)-2n,which gives the lower bounds of the Dirchlet eigenvalues of-ΔB. On the other hand,by using the Rayleigh-Ritz inequality,we deduce the upper bounds ofλk,i.e.,λk+1 1 +4n k2/nλ1. Combining the lower and upper bounds of λk,we can easily obtain the lower bound for the first Dirichlet eigenvalue λ1 Cn(1 +4n)-12n2.  相似文献   

18.
In this paper, we study the product of a composition operator \(C_{\varphi }\) with the adjoint of a composition operator \(C^{*}_{\psi }\) on the Hardy space \(H^2(\mathbb {D})\) . The order of the product gives rise to two different cases. We completely characterize when the operator \(C_{\varphi }C^{*}_{\psi }\) is invertible, isometric, and unitary and when the operator \(C^{*}_{\psi }C_{\varphi }\) is isometric and unitary. If one of the inducing maps \(\varphi \) or \(\psi \) is univalent, we completely characterize when \(C^{*}_{\psi }C_{\varphi }\) is invertible.  相似文献   

19.
This paper addresses the general continuous single facility location problems in finite dimension spaces under possibly different \(\ell _\tau \) norms, \(\tau \ge 1\) , in the demand points. We analyze the difficulty of this family of problems and revisit convergence properties of some well-known algorithms. The ultimate goal is to provide a common approach to solve the family of continuous \(\ell _\tau \) ordered median location problems Nickel and Puerto (Facility location: a unified approach, 2005) in dimension \(d\) (including of course the \(\ell _\tau \) minisum or Fermat-Weber location problem for any \(\tau \ge 1\) ). We prove that this approach has a polynomial worst case complexity for monotone lambda weights and can be also applied to constrained and even non-convex problems.  相似文献   

20.
Let \(R\) be a finite chain ring with \(|R|=q^m\) , \(R/{{\mathrm{Rad}}}R\cong \mathbb {F}_q\) , and let \(\Omega ={{\mathrm{PHG}}}({}_RR^n)\) . Let \(\tau =(\tau _1,\ldots ,\tau _n)\) be an integer sequence satisfying \(m=\tau _1\ge \tau _2\ge \cdots \ge \tau _n\ge 0\) . We consider the incidence matrix of all shape \(\varvec{m}^s=(\underbrace{m,\ldots ,m}_s)\) versus all shape \(\tau \) subspaces of \(\Omega \) with \(\varvec{m}^s\preceq \tau \preceq \varvec{m}^{n-s}\) . We prove that the rank of \(M_{\varvec{m}^s,\tau }(\Omega )\) over \(\mathbb {Q}\) is equal to the number of shape \(\varvec{m}^s\) subspaces. This is a partial analog of Kantor’s result about the rank of the incidence matrix of all \(s\) dimensional versus all \(t\) dimensional subspaces of \({{\mathrm{PG}}}(n,q)\) . We construct an example for shapes \(\sigma \) and \(\tau \) for which the rank of \(M_{\sigma ,\tau }(\Omega )\) is not maximal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号