首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a novel and simple microextraction method, termed ionic liquid/ionic liquid dispersive liquid–liquid microextraction (IL/IL‐DLLME), has been designed and developed for the rapid enrichment and analysis of environmental pollutants. Instead of using hazardous organic solvents, two kinds of ILs, hydrophobic IL and hydrophilic IL, were used as extraction solvent and disperser solvent in IL/IL‐DLLME step, respectively. Permethrin and biphenthrin, two of the often‐used pyrethroid pesticides, were used as model compounds. Factors that may affect the enrichment efficiencies were investigated and optimized in detail. Under optimum conditions, permethrin and biphenthrin exhibited a wide linear relationship over the range 1–100 μg/L. For permethrin and biphenthrin, the precisions were 4.65–7.78%, and limits of detection were found to be 0.28 and 0.83 μg/L, respectively. Satisfactory results were achieved when the present method was applied to analyze the target compounds in real‐world water samples with spiked recoveries over the range 84.1–113.5%. All these facts indicated that IL/IL‐DLLME is a simple and rapid alternative for the enrichment and analysis of environmental pollutants and will have a wide application perspective in the future.  相似文献   

2.
In the present study, a new solvent-free mode of liquid phase microextraction termed ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) was developed. Four phenols were used as model compounds in the development and evaluation of the procedure. In this method, 50 μL of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and 1.5 mL of sample aqueous solution were placed in a 2.2-mL glass test tube and mixed by aspirating and rapidly injecting by a syringe. This procedure produced a cloudy solution. In this process, phenols in the water sample were extracted into the IL phase. After centrifuging, the fine droplets of IL sedimented to the bottom of the glass test tube. The settled phase was injected into the high performance liquid chromatograph (HPLC) for separation and detection of phenols. Some parameters that might affect the extraction efficiency were optimized. The main advantages of the proposed method are high speed, high recovery, good repeatability and environmental friendliness.  相似文献   

3.
We report on a new method for the microextraction and determination of zinc (II). The ion is accumulated via ionic-liquid cold-induced aggregation dispersive liquid-liquid microextraction (IL-CIA-DLLME) followed by flame atomic absorption spectrometry (FAAS). The ionic liquid (IL) 1-hexyl-3-methylimidazolium hexafluorophosphate is dispersed into a heated sample solution containing sodium hexafluorophosphate as a common ion source. The solution is then placed in an ice-water bath upon which a cloudy solution forms due to the decrease of the solubility of the IL. Zinc is complexed with 8-hydroxyquinoline and extracted into the IL. The enriched phase is dissolved in a diluting agent and introduced to the FAAS. The method is not influenced by variations in the ionic strength of the sample solution. Factors affecting the performance were evaluated and optimized. At optimum conditions, the limit of detection is 0.18???g?L?1, and the relative standard deviation is 3.0% (at n?=?5). The method was validated by recovery experiments and by analyzing a certified reference material and successfully applied to the determination of Zn (II) in water and food samples.
Figure
?  相似文献   

4.
We report on the determination of bisphenol A and 2-naphthol in water samples using ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction combined with HPLC. Parameters governing the extraction efficiency (disperser solvent, volume of extraction and disperser solvent, pH, temperature, extraction time) were optimized and resulted in enrichment factors of 112 for bisphenol A and of 186 for 2-naphthol. The calibration curve was linear with correlation coefficients of 0.9995 and 0.9998, respectively, in the concentration range from 1.5 to 200?ng?mL?1. The relative standard deviations are 2.3% and 4.1% (for n?=?5), the limits of detection are 0.58 and 0.86?ng?mL?1, and relative recoveries in tap, lake and river water samples range between 100.1 and 108.1%, 99.4 and 106.2%, and 97.1 and 103.8%, respectively.
Figure
IL-CIA-DLLME has a high enrichment factor (112, 186), acceptable relative recovery (97.1%?C108.1%), good repeatability (2.3%, 4.1%) and a wide linear range(1.5?C200?ng?mL?1 ) for the determination of bisphenol A and 2-naphthol.  相似文献   

5.
A novel method, termed ionic liquid cold-induced aggregation dispersive liquid–liquid microextraction (IL-CIA-DLLME), combined with high-performance liquid chromatography (HPLC) was developed for the determination of three phthalate esters in water samples. Several important parameters influencing the IL-CIA-DLLME extraction efficiency, such as the type of extraction and disperser solvent, the volume of extraction and disperser solvent, temperature, extraction time and salt effect, were investigated. Under optimal extraction conditions, the enrichment factors and extraction recoveries ranged from 174 to 212 and 69.9 to 84.8%, respectively. Excellent linearity with coefficients of correlation from 0.9968 to 0.9994 was observed in the concentration range of 2–100 ng mL−1. The repeatability of the proposed method expressed as relative standard deviations ranged from 2.2 to 3.7% (n = 5). Limits of detection were between 0.68 and 1.36 ng mL−1. Good relative recoveries for phthalate esters in tap, bottled mineral and river water samples were obtained in the ranges of 91.5–98.1%, 92.4–99.2% and 90.1–96.8%, respectively. Thus, the proposed method has excellent potential for the determination of phthalate esters in the environmental field.  相似文献   

6.
A simple and rapid method of ionic liquid based dispersive liquid-liquid microextraction(DLLME) combining with high performance liquid chromatography(HPLC) was developed for the analysis of four toxic anilines in flour steamed bread and maize steamed bread.Several possible influential factors such as the type of ionic liquid and disperser solvent,extraction time,sample pH,ionic strength and the volume of ionic liquid and disperser solvent were optimized using single factor experiments and orthogonal array design(OAD) with OA 25(5 4) matrix.Analysis of variance(ANOVA) and percent contribution(PC) were used to investigate the significance of the factors of OAD.Sample pH and ionic strength are statistically demonstrated two chief factors.Under the optimum condition,the method exhibits a good linearity(r 2 > 0.99) over the studied range(50-1000 ng g 1) for anilines.The extraction factors and recoveries for the anilines in two kinds of steamed breads ranged between 34.1%-73.3% and 44.3%-95.3%,respectively.The limit of detections(LODs) and limit of quantitations(LOQs) ranged between 10-15 ng g 1 and 30-45 ng g-1.  相似文献   

7.
We have developed a new method for the microextraction and speciation of arsenite and arsenate species. It is based on ionic liquid dispersive liquid liquid microextraction and electrothermal atomic absorption spectrometry. Arsenite is chelated with ammonium pyrrolidinedithiocarbamate at pH 2 and then extracted into the fine droplets of 1-butyl-3-methylimidazolium bis(trifluormethylsulfonyl) imide which acts as the extractant. As(V) remains in the aqueous phase and is then reduced to As(III). The concentration of As(V) can be calculated as the difference between total inorganic As and As(III). The pH values, chelating reagent concentration, types and volumes of extraction and dispersive solvent, and centrifugation time were optimized. At an enrichment factor of 255, the limit of detection and the relative standard deviation for six replicate determinations of 1.0 μg?L?1 As(III) are 13 ng?L?1 and 4.9 %, respectively. The method was successfully applied to the determination of As(III) and As(V) in spiked samples of natural water, with relative recoveries in the range of 93.3–102.1 % and 94.5–101.1 %, respectively.
Figure
Speciation of arsenite and arsenate by ionic liquid dispersive liquid-liquid microextraction - electrothermal atomic absorption spectrometry  相似文献   

8.
In the present work, a new ligandless-dispersive liquid-liquid microextraction (LL-DLLME) method has been developed for preconcentration trace amounts of copper as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents, respectively. Some factors influencing on the extraction efficiency of copper and its subsequent determination were studied and optimized, such as the extraction and dispersive solvent type and volume, pH of sample solution, extraction time and salting out effect. Under the optimal conditions, the calibration curve was linear in the range of 1.0 ng mL−1-0.6 μg mL−1 of copper with R2 = 0.9985. Detection limit was 0.5 ng mL−1 in original solution (3Sb/m) and the relative standard deviation for seven replicate determination of 0.2 μg mL−1 copper was ±1.4%. The proposed method has been applied for determination of copper in standard and water samples with satisfactory results.  相似文献   

9.
In the present work, dispersive liquid-liquid microextraction based on solidification of floating organic drop was developed as a simple and rapid technique for separation of silver ions from aqueous samples. In this technique, 700 μL 0.02% of 5-(4'-dimethylamino benzyliden)-rhodanine (chelating agent) was added into the 10 mL analyte sample in a test tube and 30.0 μL 1-undecanol (extraction solvent) was injected shortly thereafter. The test tubes were sonicated, centrifuged and then some effective parameters on extraction and complex formation, such as type and volume of extraction and disperser solvent, pH, the amount of chelating agent and extraction time were optimized. The effect of the interfering ions on the analytes recovery was also investigated. The calibration graph was linear in the range of 0.10-10.0 ng mL(-1) with detection limit of 0.056 ng mL(-1) (n=8). The relative standard deviation (RSD) was ±4.3% (n=8, C=5.0 ng mL(-1)) and the enrichment factor was 250.0. The proposed method was applied for extraction and determination of silver in different water samples.  相似文献   

10.
超声辅助分散液-液微萃取测定水样中的铜   总被引:2,自引:1,他引:1  
铜是人体必需的营养元素之一,对造血细胞生长,某些酶的活性及人体内分泌有一定的生理作用,但摄取量过多就会引发多种疾病,包括急性铜中毒、肝豆状核变性、儿童肝内胆汁淤积等[1].随着工业的发展,铜污染日益严重,环境中铜含量的测定已成为国家环保部门重点监测的项目之一.因此,研究准确测定痕量铜的方法具有重要意义.  相似文献   

11.
A simple and efficient method, ionic liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), has been applied for the extraction and determination of some antioxidants (Irganox 1010, Irganox 1076 and Irgafos 168) in water samples. The microextraction efficiency factors were investigated and optimized: 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6)MIM][PF(6)] (0.06 g) as extracting solvent, methanol (0.5 mL) as disperser solvent without salt addition. Under the selected conditions, enrichment factors up to 48-fold, limits of detection (LODs) of 5.0-10.0 ng/mL and dynamic linear ranges of 25-1500 ng/mL were obtained. A reasonable repeatability (RSD≤11.8%, n=5) with satisfactory linearity (r(2)≥0.9954) of the results illustrated a good performance of the presented method. The accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 85 to 118%. Finally, the method was successfully applied for determination of the analytes in several real water samples.  相似文献   

12.
An efficient and environmental friendly ionic liquid based dispersive liquid-liquid microextraction procedure was optimized for determination of rifaximin in rat serum by reverse phase high-performance liquid chromatography. The effect of ionic liquids, dispersive solvents, extractant/disperser ratio, and salt concentrations on sample recovery and enrichment factors were studied. Among the five ionic liquids studied in the present investigation, 1-butyl-3-methylimidazolium hexafluorophosphate was found to be most effective for extraction of rifaximin. The recovery was found to be more than 98% using 1-butyl-3-methylimidazolium hexafluorophosphate and methanol as extraction and dispersive solvents, at an extractant/disperser ratio of 0.43. The recovery was further enhanced to 99.5% by the addition of 5.0% NaCl solution. A threefold enhancement in detection limit was achieved when compared to protein precipitation. The ionic liquid containing the extracted rifaximin was directly injected into HPLC system. The linear relationship was observed in the range of 0.03-10.0 μg/mL with the correlation coefficient (r(2) ) 0.9998. Limits of detection and quantification were found to be 0.01 and 0.03 μg/mL, respectively. The relative standard deviation was 2.5%. The method was validated and applied to study pharmacokinetics of rifaxmin in rat serum.  相似文献   

13.
An ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) was developed as a new approach for the extraction of organophosphorus pesticides (OPs) in water samples prior to high-performance liquid chromatography with diode array detection (HPLC-DAD). The use of a surfactant as an emulsifier in the UASEME method could enhance the dispersion of water-immiscible extraction solvent into aqueous phase and is favorable for the mass-transfer of the analytes from aqueous phase to the organic phase. Several variables that affect the extraction efficiency, including the kind and volume of the extraction solvent, the type and concentration of the surfactant, salt addition, ultrasound emulsification time and temperature, were investigated and optimized. Under the optimum experimental conditions, the calibration curve was linear in the concentration range from 1 to 200 ng mL(-1) for the seven OPs (isocarbophos, phosmet, parathion, parathion-methyl, fenitrothion, fonofos and phoxim), with the correlation coefficients (r) varying from 0.9973 to 0.9998. High enrichment factors were achieved ranging from 210 to 242. The established UASEME-HPLC-DAD method has been successfully applied for the determination of the OPs in real water samples. The limits of detection were in the range between 0.1 and 0.3 ng mL(-1). The recoveries of the target analytes over the three spiked concentration levels of the compounds (10, 50, and 100 ng mL(-1), respectively) in rain, reservoir and well water samples were between 83% and 106% with the relative standard deviations varying from 3.3% to 5.6%.  相似文献   

14.
15.
16.
A novel approach, ultrasound-assisted dispersive liquid–liquid microextraction combined with liquid chromatography–mass spectrometry (UA-DLLME with LC–MS) is demonstrated to be quite useful for the determination of trace amounts of organoarsenic compounds in edible oil. The organoarsenic compounds studied include dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and 3-nitro-4-hydroxyphenyl arsenic acid (Roxarsone). Orthogonal array experimental design (OAD) was utilized to investigate the parameter space of conditions for UA-DLLME. The optimum conditions were found to be 4 min of ultrasonic extraction using 1.25 mL of mixed solvent with 50 μL of buffer solution. Under these optimal conditions, the linear range was from 10 ng g−1 to 500 ng g−1 for DMA and Roxarsone, from 25 ng g−1 to 500 ng g−1 for MMA. Limits of detection of DMA, MMA and Roxarsone were 1.0 ng g−1, 3.0 ng g−1 and 5.8 ng g−1, respectively. The precisions and recoveries also were investigated by spiking 3-level concentrations in edible oil. The recoveries obtained were over 89.9% with relative standard deviation (RSD) of 9.6%. The new approach was utilized to successfully detect trace amounts of organoarsenic compounds in various edible oil samples.  相似文献   

17.
A hydrophobic ionic liquid was finely dispersed in aqueous solution along with a hydrophilic ionic liquid. Following centrifugation, the two phases aggregate to form relatively large droplets. Based on this phenomenon, a method termed ionic liquid/ionic liquid dispersive liquid-liquid microextraction was developed. It was applied to the enrichment of triclosan (TCS) and triclocarban (TCC) from water samples prior to HPLC with electrospray tandem MS detection. The type and volume of the hydrophobic ionic liquid (the extraction solvent) and the hydrophilic ionic liquid (the disperser solvent), salt content, and extraction time were optimized. Under optimum conditions, the method gives a linear response in the concentration ranges from 0.5 to 100???g L?1 for TCC and from 2.5 to 500???g L?1 for TCS, respectively. The limits of detection are 0.23 and 0.35???g L?1, and the repeatability is 5.4 and 6.4% for TCC and TCS, respectively. The method was validated with four environmental water samples, and average recoveries of spiked samples were in the range from 88% to 111%. The results indicate that the method is a promising new approach for the rapid enrichment and determination of organic pollutants.
Ionic liquids [C8MIM][PF6] and [C4MIM][BF4] were used as extractant and disperser in dispersive liquid-liquid microextraction for the enrichment and determination of triclosan and triclocarban in environmental water samples prior to HPLC-ESI-MS/MS. Experimental results indicated that it was a feasible alternative to existing methods.  相似文献   

18.
本文提出了一种基于超声辅助离子液体分散液液微萃取紫外分光光度法测定药物及人血清中氯诺昔康含量的方法。疏水性离子液体1-辛基-3-甲基咪唑六氟磷酸盐([C8mim PF6])被用作萃取剂,在超声的帮助下,不使用分散剂离子液体即可萃取氯诺昔康,萃取率在85.0%以上。对实验条件如萃取剂的种类和用量、萃取时间、萃取温度、溶液p H、离心时间等进行了优化。在优化条件下,工作曲线的线性范围为0.2~15.0μg·m L-1,检测限为0.032μg·m L-1,加标回收率分别为94.5%~99.0%(药物)和92.2%~98.7%(人血清)。用本方法对氯诺昔康药片和加标后的人血清样品进行了测定,结果令人满意。  相似文献   

19.
臧晓欢  张贵江  王春  王志 《色谱》2015,33(2):103-111
分散液相微萃取(DLLME)作为一种新型样品前处理技术,具有操作简便、快速,富集效率高,萃取剂使用量少等优点。本文对近年来该技术在分离科学领域应用的最新进展进行了简要评述。主要讨论了以下3个方面:(1)DLLME与其他净化或萃取技术的结合;(2)萃取剂的拓展;(3)萃取装置的改进。  相似文献   

20.
In this article, a novel method termed as temperature-assisted ionic liquid dispersive liquid-liquid microextraction (TA IL-DLLME) combining high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones in Radix et Rhizoma Rhei samples. The ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) was used to replace volatile organic solvent as an extraction solvent for the extraction of anthraquinones (aloe-emodin, rhein, emodin, chrysophanol and physcion) from Radix et Rhizoma Rhei. Several important parameters influencing the extraction efficiency of TA IL-DLLME such as the type and volume of extraction solvent and disperser solvent, sample pH, extraction time, extraction temperature, centrifugation time as well as salting-out effects were optimized. Under the optimal conditions, the spiked recovery for each analyte was in the range of 95.2-108.5%. The precisions of the proposed method were varied from 1.1% to 4.4% (RSD). All the analytes exhibited good linearity with correlation coefficients (r2) ranging from 0.9986 to 0.9996. The limits of detection for all target analytes were ranged from 0.50 to 2.02 μg L−1 (S/N = 3). The experimental results indicated that the proposed method was successfully applied to the analysis of anthraquinones in Radix et Rhizoma Rhei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号