首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interactions of non-ionic amphiphilic diblock copolymer poly(oxyethylene/oxybutylene)(E39B18) with anionic surfactant sodium dodecyl sulphate(SDS) and cationic surfactant hexadecyltrimethylammonium bromide(CTAB) were studied by using various techniques such as surface tension,conductivity,steady-state fluorescence and dynamic light scattering.Surface tension measurements were used to determine the critical micelle concentration(CMC) and thereby the free energy of micellization(△Gmic),free energy of adsorption(△Gads),surface excess concentration(Γ) and minimum area per molecule(A).Conductivity measurements were used to determine the critical micelle concentration(CMC),critical aggregation concentration(CAC),polymer saturation point(PSP),degree of ionization(α) and counter ion binding(β). Dynamic light scattering experiments were performed to check the changes in physiochemical properties of the block copolymer micelles taken place due to the interactions of diblock copolymers with ionic surfactants.The ratio of the first and third vibronic peaks(I1/I3) indicated the polarity of the pyrene micro environment and was used for the detection of micelle as well as polymer-surfactant interactions.Aggregation number(N),number of binding sites(n) and free energy of binding (△Gb) for pure surfactants as well as for polymer-surfactant mixed micellar systems were determined by the fluorescence quenching method.  相似文献   

2.
The cloud point temperature, T(c), was investigated for aqueous solutions of poly(oxyethylene) alkyl ethers, C(n)E(m), and their mixtures. The experimental T(c)'s for single surfactant systems were analyzed according to the Flory-Huggins model for cloud point phenomenon, and the enthalpy and the entropy changes associated with the process of the separation of micellar solution into pure water and pure surfactant were estimated. It was found that the enthalpy-entropy compensation relationship holds for this process. The Flory-Huggins model was extended to the binary surfactant mixtures, and the expression of T(c) as a function of the composition was derived assuming the regular solution for mixed micelles. The experimental results of T(c) obtained for mixtures of C(n)E(m) were well reproduced by the model calculation. Discussion is given concerning the interaction parameters of different surfactant species in mixed micelles determined by this model calculation.  相似文献   

3.
4.
Studying the disjoining pressure Pi as a function of the film thickness h (Pi-h curves) of foam films stabilized by ionic and nonionic surfactants, one finds that the surface charge density q0 of films stabilized by ionic surfactants increases with increasing surfactant concentration, while the opposite holds true for nonionic surfactants. Thus, it should be possible to tune the surface charge density with mixtures of nonionic and ionic surfactants. To address this question, we studied foam films stabilized by aqueous solutions of surfactant mixtures. The mixtures consisted of the nonionic beta-dodecylmaltoside (beta-C12G2) and the cationic dodecyl trimethylammonium bromide (C12TAB) with mixing ratios of beta-C12G2/C12TAB = 1:0, 50:1, 1:1, 1:50, 0:1. The addition of small amounts of C12TAB to beta-C12G2 first neutralizes the negative surface charge of the beta-C12G2 films and finally leads to a charge reversal from negatively to positively charged surfaces. On the other hand, by adding small amounts of beta-C12G2 to C12TAB, one observes the formation of stable CBFs which was also observed for the pure C12TAB. However, in contrast to the pure C12TAB, the resulting Pi-h curves for the mixtures cannot be described with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory; the slope of the curves is too steep, and it barely changes with changing electrolyte concentration. A possible explanation for this observation will be given and discussed.  相似文献   

5.
Losses of surfactants through sorption to soils/sediments, especially to clay minerals, by various chemical interactions such as sorption and precipitation threaten the success of surfactant in enhancing remediation of contaminated soil and groundwater. In this study, the behavior of mixtures of a nonionic surfactant (TX-100) and an anionic surfactant (SDBS) sorbed to a montmorillonite saturated with calcium (Ca-montmorillonite) was investigated, and compared with that of individual surfactants. It is shown that the amounts of both TX-100 and SDBS sorbed to Ca-montmorillonite are significant. However, the amount of either TX-100 or SDBS sorbed can be decreased and minimized when they are mixed with each other. Mixed micelle formation, which causes negative deviation of critical micelle concentrations (CMCs) from the ideal, is responsible for the decrease in sorbed TX-100 and sorbed SDBS in their mixtures. Because of their ability to minimize their amounts sorbed and thus enhance their active concentrations, as observed in mixed TX-100 and SDBS systems, mixed anionic-nonionic surfactants exhibit potential advantages in the area of enhanced soil and groundwater remediation.  相似文献   

6.
Formation of associates between single-or double-charged anions of sulfophthalein dye Phenol Red and single-charged cations of cyanines in aqueous solutions was considered. The association constants were estimated from the spectral data. Geometric and energy characteristics of the associates were calculated. The suitability of the associates formed by Phenol Red for quantitative determination of cationic surfactants in aqueous solutions was examined.  相似文献   

7.
8.
The use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X‐100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X‐100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X‐100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K+ was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples.  相似文献   

9.
Self-aggregation of polyoxyethylene (POE)-type nonionic surfactants in ionic liquids, 1-butyl- and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (bmimCF3SO3 and emimCF3SO3), was investigated by means of 1H-NMR chemical shift, dynamic light-scattering (DLS), and surface tension measurements. The surfactants showed no definite aggregate formation in bmimCF3SO3. This shows a remarkable contrast to the previous observation in bmimBF4 and bmimPF6, and demonstrates an importance of anion species to determine the property of ionic liquids as a solvent to support the self-assembly of amphiphilic compounds. On the other hand, the surfactants formed micelles in emimCF3SO3, which shows an importance of alkyl chain attached to imidazolium ring to determine the solvophobic interaction between surfactant hydrocarbon chains in imidazolium-based ionic liquids. The low solvophobicity of the surfactants to the ionic liquid composed of imidazolium cation with long alkyl chain is attributed to an affinity of the surfactant hydrocarbon chain to the imidazolium alkyl chain. The values of micellization parameters and surface adsorption parameters obtained for the surfactant solutions in emimCF3SO3 are reported.  相似文献   

10.
New findings are reported on simple ways to modify an ordinary HPLC column to obtain efficient ion chromatographic (IC) separations. Permanently coating a column with an ionic surfactant is known to produce an effective column for IC. We now show that incorporation of a nonionic surfactant in the coating, or coating in separate layers, results in a dramatic reduction of ion retention times and gives sharper peaks. Dynamic coating by incorporating a small amount of an alcohol, diol or zwitterion in the aqueous mobile phase permits good separations of alkanecarboxylic acids. A mobile phase containing a quaternary ammonium cation and a zwitterion anion provides excellent separations of common anions on a silica C18 column. An aqueous eluent containing a mixture of a zwitterion 4-(2-hydroxyethyl) acid and methanesulfonic acid can be used in conjunction with a standard cation exchange column. After passing through a membrane suppressor, the mobile phase has a slightly acidic pH, permitting divalent transition metal ions (as well as others) to be detected by conductivity.  相似文献   

11.
The micellar extraction of barium with phases of nonionic surfactant Triton X-100 was studied in the presence of aliphatic monocarboxylic acids, crown ethers, and Carboxyarsenazo and its mixtures with cetylpyridinium chloride and octylamine. It was shown that the complete extraction of barium into the micellar phase was attained using Carboxyarsenazo and cationic surfactants in the presence of octylamine through the formation of a ternary hydrophobic complex. The conditions for the determination of the atomic absorption of barium in water with preconcentration into the nonionic surfactant phase at the cloud point temperature were developed.  相似文献   

12.
The interaction between polyoxyethylene (7 and 23) dodecyl ether (Unitol L-70 and L-230, respectively) and polyoxyethylene (9.5) nonylphenol ether (Renex 95) with amylopectin was studied employing the relative intensities of pyrene fluorescence emission bands 1 to 3, and excimer to monomer ratios. The pyrene concentration was very low (1mumol/L), and the probe was added to amylopectin solution by two different methods. These experimental conditions have given information about how amylopectin branch structure affects the molecular diffusion in aqueous solution. Amylopectin clusters are formed from the biopolymer outer branches. The cluster polarity is similar to ethylene glycol, confirmed by the Reichardt dye measurements. Inside the clusters, amylopectin-Unitol surfactant complexes can form with cac and cmc dependent on the biopolymer concentration. The micellar aggregation number of 60+/-5 was determined through pyrene steady-state fluorescence quenching experiments.  相似文献   

13.
Summary Adsorption depends mainly on the relative amounts of anionic and nonionic surfactants present, the equilibrium concentration and the duration of exposure. In the case of similar hydrophobic chain lengths nonionic surfactants will be adsorbed more strongly than anionic compounds, thus displacing the latter from the carbon surface.The difference in the attraction to the carbon surface can be such, that significant adsorption of anionics is only observed where anionics are present in considerable excess.Under such conditions, anionics will diffuse more rapidly into the pore system of the adsorbant than nonionics. Therefore, the surface coverage with anionics will be higher after short exposure than after a longer period of time, when replacement by nonionics has started.At very low equilibrium concentrations (corresponding to low surface coverage), adsorption of anionics will be even increased by the presence of nonionics. This is due to the formation of mixed layers and the fact that in such layers the repulsion between the charged hydrophilic groups of the anionic surfactants will decrease.
Zusammenfassung Die Adsorption hängt entscheidend von dem Mischungsverhältnis Aniontensid/ nichtionogenes Tensid, der Gleichgewichtskonzentration und der Adsorptionszeit ab. Bei annähernd gleicher hydrophober Kette werden nichtionogene Tenside stärker adsorbiert als Aniontenside und verdrängen diese von der Kohlenstoffoberfläche. Der Unterschied in der Attraktion zur Kohlenstoffoberfläche ist so groß, daß eine signifikante Adsorption von Aniontensiden erst bei hohem Überschuß in der Mischung im Vergleich zum nichtionogenen Tensid beobachtet werden kann. Unter diesen Verhältnissen diffundieren Aniontenside schneller in das Porensystem des Adsorbens, so daß im Bereich kurzer Zeiten, bevor die Verdrängung durch das nichtionogene Tensid einsetzt, an der Oberfläche Aniontenside stärker adsorbiert sind. Im Bereich sehr geringer Gleichgewichtskonzentrationen und dementsprechend geringen Oberflächenbelegungen wird jedoch wegen der Bildung von Mischfilmen beider Tensidarten und Verminderung der gegenseitigen Abstoßung der gleichsinnig geladenen hydrophilen Gruppen des Aniontensides durch das nichtionogene Tensid die Adsorption des Aniontensids sogar gesteigert.


With 7 figures

Presented at IUPAC-International Conference on Colloid and Surface Science, Budapest 15–20 September 1975.  相似文献   

14.
Non-Newtonian shear viscosities were measured over six decades of strain rate k for 13 solutions of both the ionic and nonionic forms of polyacrylamide. By using the Weissenberg rheogoniometer with both the cone-and-plate and the parallel-plate attachments, the normal stress functions σ1 (k2) and σ2(k2) were obtained for four of the solutions. From the measurements of the shear viscosity and the normal stresses at low rates of strain, characteristic times τ and τN, respectively, were determined for each solution. The quantity τ was then used to nondimensionalize the strain rate τk, and when plotted versus the reduced shear viscosity, found successfully to correlate the experimental data for all the polyelectrolyte solutions over the entire range of τk and the data for the concentrated solutions of the nonionic polymer over a smaller range of τk. However, in order to correlate the normal stress data for the polyelectrolyte solutions, a second reduced strain rate (τNk) was used. Thus, two different times were required to correlate all the observed data. The shear viscosity data for the dilute solutions of the nonionic polymer were well represented by the two-parameter, non-Newtonian intrinsic viscosity function that has been computed by Fixman.  相似文献   

15.
16.
We have investigated the effect of mixing spontaneously formed dispersions of the cationic vesicle-forming dioctadecyldimethylammonium chloride and bromide (DODAX, with X being anions Cl- (C) or Br- (B)) with solutions of the micelle-forming nonionic ethylene oxide surfactants penta-, hepta-, and octaethyleneglycol mono-n-dodecyl ether, C12E(n) (n = 5, 7, and 8), and the zwitterionic 3-(N-hexadecyl-N,N-dimethylammonio)propane sulfonate (HPS). We used for this purpose differential scanning calorimetry (DSC), turbidity, and steady-state fluorescence spectroscopy to investigate the vesicle-micelle (V-M) transition yielded by adding C12E(n) and HPS to 1.0 mM vesicle dispersions of DODAC and DODAB. The addition of these surfactants lowers the gel-to-liquid crystalline phase transition temperature (T(m)) of DODAC and DODAB, and the transition becomes less cooperative, that is, the thermogram transition peak shifts to lower temperature and broadens to disappear when the V-M transition is complete, the vesicle bilayer becomes less organized, and the T(m) decreases, in agreement with measurements of the fluorescence quantum yield of trans-diphenylpolyene (t-DPO) fluorescence molecules incorporated in the vesicle bilayer. Turbidity data indicate that the V-M transition comes about in three stages: first surfactants are solubilized into the vesicle bilayer; after saturation, the vesicles are ruptured, and, finally, the vesicles are completely solubilized and only mixed micelles are formed. The critical points of bilayer saturation and vesicle solubilization were obtained from the turbidity and fluorescence curves, and are reported in this communication. The solubility of DODAX is stronger for C12E(n) than it is for HPS, meaning that C12E(n) solubilizes DODAX more efficiently than does HPS. The surfactant solubilization depends slightly on the counterion, and varies according to the sequence C12E5 > C12E7 > C12E8 > HPS.  相似文献   

17.
The formation of micelles of hexadecyltrimethylammonium chloride (CTAC) and sodium dodecylsulfate (SDS) in aqueous solutions containing charged polysaccharides was studied by steady-state and time-resolved fluorescence measurements using pyrene as a photophysical probe. Micropolarity studies using the I1/I3 ratio of the vibronic emission bands of pyrene and the behaviour of the IE/IM ratio between the excimer and monomer emissions show the formation of hydrophobic domains. The interactions between the polyelectrolytes and surfactants of opposite charge lead to the formation of induced pre-micelles at surfactant concentrations lower than the critical micellar concentration (cmc) of the surfactants. At similar concentrations, the IE/IM ratio shows a peak. This aggregation process is assumed to be due to electrostatic attractions. At higher surfactant concentrations, near the critical micellar concentration, micelles with the same properties as those found in pure aqueous solution are formed. On the other hand, systems containing polyelectrolytes and surfactants of the same charge do not show this behaviour at low concentrations. The presence of long alkyl chains bound to the polyelectrolytes also induces the formation of free micelles at concentrations somewhat below the aqueous cmc.  相似文献   

18.
The spontaneous hydrolysis of phenyl chloroformate was studied in various anionic, nonionic, zwitterionic, and cationic aqueous micellar solutions, as well as in mixed anionic–nonionic micellar solutions. In all cases, an increase in the surfactant concentration results in a decrease in the reaction rate and micellar effects were quantitatively explained in terms of distribution of the substrate between water and micelles and the first‐order rate constants in the aqueous and micellar pseudophases. A comparison of the kinetic data in nonionic micellar solutions to those in anionic and zwiterionic micellar solutions makes clear that charge effects of micelles is not the only factor responsible for the variations in the reaction rate. Depletion of water in the interfacial region and its different characteristics as compared to bulk water, the presence of high ionic concentration in the Stern layer of ionic micelles, and differences in the stabilization of the initial state and the transition state by hydrophobic interactions with surfactant tails can also influence reactivity. The different deceleration of the reaction observed in the various micellar solutions studied was discussed by considering these factors. Synergism in mixed‐micellar solutions is shown through the kinetic data obtained in these media. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 445–451, 2002  相似文献   

19.
Temperature-responding physical hydrogels are promising materials as injectable drug delivery carriers which could hold useful bioactive materials inside the polymer networks for further controlled releases. Aimed at desired qualities at body temperature, those gel characteristics need to be adjusted carefully. In this point of view, surfactant is one of the useful molecules to be used by simple formulations without harmful chemical reactions. In this study, thermothickening of amphiphilic nonionic polyphosphazene solution is modified by anionic and cationic surfactants with different alkyl chains and counter-ions. Specified in the thermothickening system, a maximum viscosity (ηmax) and a temperature at that point (Tmax) are changed independently reflecting unique intermolecular interactions. At low concentration (1–9 mM) of the added surfactant, the ηmax is maximized at 3 mM surfactant regardless of the surfactant type while the Tmax is increased continuously along with the surfactant concentration. From a kinetic point of view, this 3 mM surfactant at the maximized ηmax reflects a polymer-dominating interaction and highly favorable polymer–surfactant interaction with a low selectivity in the surfactant type. However, the magnitude of the maximum viscosity (ηmax) is dependent on the surfactant tail, which reflects the lifetime and the strength of the hydrophobic domains of the polymer network affected by the surfactants. Meanwhile, the magnitude of the Tmax depended on the surfactant head group, which means the interfacial tension of the polymer solutions changed by the surfactants. At high concentration (10 and 30 mM) of the cationic surfactants added to the polymer solutions with two different viscosities, the cationic surfactants are supposed to interact either with the hydrophobic parts of the aggregated polymer with high viscosity or on the backbone of the less- or non-aggregated polymer with low viscosity.Ionic surfactants change the thermothickening of the amphiphilic nonionic polyphosphazene solution in a unique tail- or head-dependent way. Moreover, the concentration of the added surfactants and the association pattern of the pure polymer solutions are also crucial for the thermothickening phase behaviors. Temperature-responsive polyphosphazenes in this work exhibit unique and controllable interactions with ionic surfactants.  相似文献   

20.
Synergy and antagonism between sugar-based surfactants, a group of environmentally benign surfactants, and cationic surfactants and nonionic ethoxylated surfactants have been investigated in this study with solids which adsorbs only one or other when presented alone. Sugar-based n-dodecyl-beta-D-maltoside (DM) does not adsorb on silica by itself. However, in mixtures with cationic dodecyltrimethylammonium bromide (DTAB) and nonionic nonylphenol ethoxylated decyl ether (NP-10), DM adsorbs on silica through hydrophobic interactions. In contrast, although DM does adsorb on alumina, the presence of NP-10 reduces the adsorption of DM as well as that of the total surfactant adsorption. Such synergistic/antagonistic effects of sugar-based n-dodecyl-beta-D-maltoside (DM) in mixtures with other surfactants at solid/liquid interfaces were systematically investigated and some general rules on synergy/antagonism in mixed surfactant systems are identified. These results have implications for designing surfactant combinations for controlled adsorption or prevention of adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号