首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A direct inductively coupled plasma atomic emission method for the determination of Ag, Al, As, Ca, Cd, Co, Cu, Fe, Ga, K, Li, Mg, Na and Pb in high-purity tantalum powders has been developed. The electrothermal vaporization technique using a modified longitudinally-heated Grün-ETAAS furnace with sample introduction on a platform and an automated sampling workstation provided the possibility of in situ analyte-matrix separation, freedom of blank, and applicability to routine analysis. Hard- and software were modified to allow signal recording and data processing independent of the spectrometer software. The extent of spectral interferences by Ta-emission at the analyte wavelengths used was determined and the analyte signals of each sample run were automatically corrected. Limits of detection ranging from 5 ng/g (Ag, Cu) to 250 ng/g (K, Pb) were obtained using optimized furnace and spectrometer conditions. The method was applied to the analysis of two tantalum samples and the results for Cu, Fe, K, Mg and Na were compared with those obtained by liquid and solid-samping ETAAS, showing satisfactory agreement.  相似文献   

3.
Electrothermal vaporization (ETV) sample introduction in inductively coupled plasma atomic emission spectrometry suffers from severe matrix effects. In the present study, the differences between wet and dry plasma conditions are studied. In addition, the influence of the sample composition was investigated. An inductively coupled plasma optical emission spectrometer, with detection based on charge transfer, allowed the simultaneous measurement of ionic and atomic emission line intensities during the transient signal. Mg and Cr were the test elements. The ion-to-atom line ratio increases at higher power settings, but the changes were larger when a nebulizer was used for sample introduction than with ETV sample introduction. The decrease of ion-to-atom line ratios at increasing observation height was more pronounced when ETV was used, due to the absence of water vapor. The gas flow rate showed a stronger influence for nebulization than for ETV. In the presence of a calcium matrix, lower ion-to-atom line ratios were observed, but the ratio did not change significantly within the transient emission signal. Similar line ratios were observed for different amounts of calcium matrix. The values of ion-to-atom line ratios for Mg and Cr indicate that the plasma ionization and thermal characteristics are not modified due to the presence of the calcium matrix.  相似文献   

4.
本文采用国产部件组装了一套ETV-ICP-AES仪器体系,对装置的连接及操作参数进行优化。深入系统地考察了分析物的蒸发过程和传输过程,提出了难熔元素的蒸发和传输机理。研究了ETV-ICP-AES中基体效应,提出了以聚四氟乙烯为氟化剂,氟化辅助ETV-ICP-AES测定难熔元素的新方法,应用于环境和生物标样中痕量元素分析,获得满意结果。  相似文献   

5.
An improved double chamber electrothermal vaporization (ETV) system was designed. A new inner chamber and its bottom plate made of quartz glass were attached with carrier support gas inlet port for the determination of cadmium by inductively coupled plasma atomic emission spectrometry (ICP-AES). The use of the inner chamber in combination with the plate played important roles to transport the metal vapor efficiently into argon ICP. Ten-μl sample aliquots were dried at 100 °C and subsequently heated at 1000 °C on the tungsten boat furnace. The evolved vapor was swept into the ICP source through PTFE tubing and the inner chamber by a 0.8 l/min H2 (7%)-Ar carrier gas. The performance parameters of ETV-ICP-AES such as temperature program and gas flow rate were evaluated using cadmium standard solution. Under the optimized experimental conditions, the best attainable detection limit at Cd II 214.438 nm line was 0.2 ng/ml with linear dynamic ranges of 50 to 10,000 ng/ml for cadmium. The instrumental precision expressed as the relative standard deviation (RSD) from ten replicate measurements of 10,000 ng/ml for cadmium by ETV-ICP-AES was 0.85%. The present method has been successfully applied to the determination of cadmium in zinc-base materials.  相似文献   

6.
An atomic emission spectrometric method is described for the determination of trace elements in microvolume samples especially of biological materials. Based upon the arrangement of a commercial electrothermal vaporizer and a 40-MHz inductively coupled plasma, the direct determination of aluminum and silicon in human body fluids such as urine and serum and aluminum in hemodialysis solution is performed. The instrumental system involves vaporizing the sample from a modified graphite electrode followed by atomization and excitation of the vapors in the ICP discharge. Compromise experimental conditions are reported and calibration functions compared. Limits of detection in 5-μl samples were 8 pg Al and 2.5 ng Si, and after preconcentration of Al with a poly(acrylamidoxime) resin, the detection limit was 1 pg Al. Recovery of 5 μg Siml and 10 ng Alml from aqueous and synthetic standards was 80–85% and 96–103%, respectively.  相似文献   

7.
A novel method for the determination of trace elements in microliter samples using the tantalum filament electrothermal vaporization/low-pressure inductively coupled plasma (ETV/LP-ICP) atomic emission spectrometry has been developed. An improved tantalum filament ETV was directly coupled with LP-ICP system for efficient vaporization of microliter samples and further quantitative analysis. The experimental parameters including ETV current, rf power and mass flow rate of argon carrier gas were optimized using the copper emission signal produced by 5 μl of standard solution (5 μg/ml). Under the optimized condition, the analytical performances including linearity, precision and detection limit for the developed system were investigated. Absolute detection limits in the range of 22–391 pg for selected eight elements (Fe, Cu, Cr, Mn, Pb, K, Zn and Mg) were obtained with satisfactory precision (<8.9% RSD). The feasibility of the developed system has been demonstrated by analyzing wheat gluten NIST standard sample.  相似文献   

8.
Pierre Masson 《Talanta》2007,71(3):1399-1404
The present work demonstrates the capability of electrothermal vaporization (ETV) to become an important tool of solid sample introduction in ICP-AES for plant sample analysis. Direct determination of Al, Ca, Fe, K, Mg, Mn, Na and Zn was investigated in powdered plant samples. Obtaining good results for major elements in plant samples was governed by some special operating conditions. The sensitivity of the method necessitated the use of ICP in radial view configuration. The behavior of elements during vaporization was studied between 500 and 2600 °C. External calibration was carried out using solid external (cellulose) spiked with aqueous standard solutions. However, performances of the analytical method were found dependent of argon flow rates. Analytical accuracy of the method was tested in three reference materials. Analytical results agreed with certified values when cellulose was used in calibration. However, K could not be determined because of excessive sensitivity. Without cellulose, it was found that Fe results were underestimated and Zn results overestimated. Relative standard deviations varied from 3 to 23%. Limits of detection varied from 1 to 80 ng g−1 from one element to the other for a typical mass sample of 2 mg.  相似文献   

9.
Reported are results for the quantitative determination of absolute transport efficiency in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the Perkin-Elmer HGA-600MS electrothermal vaporizer. The absolute transport efficiencies for Mo, In, Tl and Bi were determined using experimental conditions typical of those applied to real analysis by ETV-ICP-MS. Experiments using an on-line filter trapping apparatus indicated that particles produced by the ETV device were smaller than 0.1 μm in diameter. The nature and condition of the ETV graphite surface, the length of the transfer tube, and the effect that diluted seawater and palladium modifiers have on analyte transport efficiency were investigated. Transport efficiency was comparable for all elements studied and was enhanced with previously used, rather than new, graphite tubes and when seawater and palladium carriers were present. When analyte was vaporized without carrier from a new graphite tube, the transport efficiency to the plasma was approximately 10%. Approximately 70% of the total amount of analyte vaporized was deposited within the ETV switching valve, 19% onto the transfer tubing and 1% onto the components comprising the torch assembly. These conditions represent the `worst case scenario', with analyte transport to the plasma increasing to approximately 20% or more with the addition of carrier.  相似文献   

10.
A procedure based on electrothermal evaporation (ETV) and inductively coupled plasma atomic emission spectrometry (ICP-OES) for the determination of trace impurities in Al2O3 powders without any sample pretreatment is presented. With the aid of matrix modifier the transport and the evaporation efficiency for refractory compounds could be increased by forming halides with a lower boiling point. As calibration is still a problem in direct solid sample analysis, different calibration approaches including the use of certified reference materials from NIST and standard addition of aqueous solutions of analytes were discussed. The accuracy obtained with calibration and with the standard addition method was shown up for the elements Ca, Fe, Ga, Mg, Mn, Na, Ni and V for the case of Al2O3 NIST standard reference material (SRM 699). The ETV–ICP-OES method was used for the analysis of Al2O3 powders with impurities in the low μg/g range and the results for the elements Ca, Fe, Ga, Mg, Mn, Na, Ni and V obtained with evaporation of discrete powder amounts with ETV–ICP-OES and slurry evaporation under the use of ultrasonic homogenization during the sampling and ETV–ICP-MS were shown to be in a good agreement.  相似文献   

11.
A novel method for the determination of trace rare earth impurities in ZrO2 powder has been developed based on electrothermal vaporization inductively coupled plasma atomic emission spectrometry. A polytetrafluoroethylene slurry was used as a fluorinating reagent to convert both the matrix (Zr) and the analytes (rare earth elements) into fluorides with different volatilities at a high temperature in a graphite furnace. The more volatile ZrF4 was removed in-situ by selective vaporization prior to the determination of the analytes, removing matrix spectral interferences. Under optimum operating conditions, the absolute detection limits of the analytes varied from 0.04 ng (Yb) to 0.50 ng (Pr) with relative standard deviations less than 5%. The recommended approach has been successfully applied to the determination of trace rare earth impurities (La, Pr, Eu, Gd, Ho and Yb) in ZrO2 powder and the results were in good agreement with those obtained by pneumatic nebulization inductively coupled plasma atomic emission spectrometry after the separation of the matrix using a solvent extraction procedure.  相似文献   

12.
A multiplexed electrothermal vaporization (ETV) system for sample introduction into an inductively coupled plasma was designed in an effort to increase sample turn-around time. Tungsten filaments (300 W), originally designed for overhead projectors, were chosen for use as ETVs to avoid the high power requirements associated with other ETV devices, e.g. graphite furnaces (2–3 kW). In short, we have multiplexed the thermal stages have been multiplexed such that a vaporization event can take place every 20 s. This represents a significant increase in the throughput typically associated with ETV-ICPMS, which is normally approximately 20–30 samples/h. Evaluated with respect to common figure of merit criteria, the performance of the multiplexed ETV system is similar to that seen with conventional graphite furnace ETV systems. However, several mass spectral interferences can be introduced by the presence of W into the plasma, which hinder the analysis of certain metals (Hg, Mo, etc.). Thus, other low power vaporizers (e.g. Re, Ta) should be considered for use in future systems.  相似文献   

13.
A modified graphite furnace for solid-sampling atomic absorption spectrometry as an electrothermal vaporizer (ETV) was coupled to a Perkin–Elmer/Sciex ELAN 6000 ICP mass spectrometer. The integrals obtained from electrothermal vaporization of aliquots containing As, Cd, Cu, Co, Fe, Mn, Pb, Se, and Zn were compared with those obtained from pneumatic nebulization of the same aqueous standard solution. The pneumatic nebulizer was calibrated by weighing the mass of aqueous aerosol trapped on a filter. With “wet plasma” conditions maintained also for measurements with the ETV and reference signals for analyte signals obtained with the calibrated pneumatic nebulization, the transport efficiency of the ETV system, e.g. the ratio of the analyte amount introduced into the plasma to that amount dosed into the vaporizer, was determined. The transport efficiency of two different tube and interface designs has been evaluated. Investigations with and without the use of trifluoromethane as reactive gas, with different furnace heating rates, and with varying gas flows were performed. In general, the tube equipped with a nozzle led to generally higher transport efficiency than the standard tube. Without trifluoromethane transport efficiencies ranged from 10% to 35% with the standard tube and from 15% to 50% with the nozzle-type tube. With addition of 2 mL min–1 trifluoromethane to the argon flow of 400 mL min–1 through the tube, transport efficiencies from 20% to 70% and from 70% to100% were achieved with the standard and nozzle-type tubes, respectively.  相似文献   

14.
A modified graphite furnace for solid-sampling atomic absorption spectrometry as an electrothermal vaporizer (ETV) was coupled to a Perkin-Elmer/Sciex ELAN 6000 ICP mass spectrometer. The integrals obtained from electrothermal vaporization of aliquots containing As, Cd, Cu, Co, Fe, Mn, Pb, Se, and Zn were compared with those obtained from pneumatic nebulization of the same aqueous standard solution. The pneumatic nebulizer was calibrated by weighing the mass of aqueous aerosol trapped on a filter. With "wet plasma" conditions maintained also for measurements with the ETV and reference signals for analyte signals obtained with the calibrated pneumatic nebulization, the transport efficiency of the ETV system, e.g. the ratio of the analyte amount introduced into the plasma to that amount dosed into the vaporizer, was determined. The transport efficiency of two different tube and interface designs has been evaluated. Investigations with and without the use of trifluoromethane as reactive gas, with different furnace heating rates, and with varying gas flows were performed. In general, the tube equipped with a nozzle led to generally higher transport efficiency than the standard tube. Without trifluoromethane transport efficiencies ranged from 10% to 35% with the standard tube and from 15% to 50% with the nozzle-type tube. With addition of 2 mL min(-1) trifluoromethane to the argon flow of 400 mL min(-1) through the tube, transport efficiencies from 20% to 70% and from 70% to 100% were achieved with the standard and nozzle-type tubes, respectively.  相似文献   

15.
A method has been described for the direct determination of Ti, Cu, Mn, Cr and Cd in solid biological samples without any chemical pretreatment by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) with slurry sampling. A polytetrafluorethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of the analytes from the graphite furnace. The interface between furnace device and ICP torch and the main factors affecting the analytical signal were investigated systematically. The detection limits for the determination of Ti, Cu, Mn, Cr and Cd are 6.3, 4.7, 10, 13 and 278 ng/mL, respectively; the relative standard deviations are in the range of 1.5 (Mn) ∼4.0% (Cd) after optimization of the operating conditions. The recommended approach has been applied to directly determine the trace elements of interest in the Chinese traditional medicine Loulu and in the solid biological standard reference material (peach leaves, GBW 08501) with satisfactory results. Received: 28 December 1998 / Revised: 9 February 1999 / Accepted: 12 February 1999  相似文献   

16.
A method has been described for the direct determination of Ti, Cu, Mn, Cr and Cd in solid biological samples without any chemical pretreatment by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) with slurry sampling. A polytetrafluorethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of the analytes from the graphite furnace. The interface between furnace device and ICP torch and the main factors affecting the analytical signal were investigated systematically. The detection limits for the determination of Ti, Cu, Mn, Cr and Cd are 6.3, 4.7, 10, 13 and 278 ng/mL, respectively; the relative standard deviations are in the range of 1.5 (Mn) ∼4.0% (Cd) after optimization of the operating conditions. The recommended approach has been applied to directly determine the trace elements of interest in the Chinese traditional medicine Loulu and in the solid biological standard reference material (peach leaves, GBW 08501) with satisfactory results. Received: 28 December 1998 / Revised: 9 February 1999 / Accepted: 12 February 1999  相似文献   

17.
Slurry sampling followed by electrothermal vaporization (ETV) was used as sample introduction technique in inductively coupled plasma atomic emission spectrometry (ICP-AES) for the direct determination of trace elements in food samples. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote vaporization and the transportation of analytes. The main factors affecting the analytical signals were investigated in detail. Under optimum operating conditions, the detection limits (DL) for this method varied from 1.8 (Cu) to 215 ng/mL (Zn), while the relative standard deviations (RSD) were in the range 2.6% (Cu)-7.2% (Zn). The proposed method was successfully applied to the direct determination of trace amounts of V, Cu, Cr, Fe, Zn, and La in rice without any chemical pretreatment. The precision was evaluated by analyzing a standard reference material (tea leaves, GBW 07605) and comparing the results from this method with results obtained by pneumatic nebulization (PN) ICP-AES after the wet-chemical decomposition of the same sample.From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 3, 2005, pp. 286–290.Original English Text Copyright © 2005 by Chen.This article was submitted by the author in English.  相似文献   

18.
Slurry sampling followed by electrothermal vaporization was used as sample introduction technique for digestion-free analysis of aluminium nitride and aluminium oxide by inductively coupled plasma atomic emission spectrometry. The vaporizer consisted of a tungsten coil in a quartz chamber. Spectral interferences and background emission caused by tungsten ablation from the coil were reduced by coating it with tungsten carbide. Different approaches for background correction techniques were considered. The analytes Ca, Cd, Co, Cr, Cu, Fe, Mg, Ni and Zn were determined simultaneously, whereas Mn and Na were determined in the sequential mode. Calibration was performed using the standard additions method. The accuracy was checked by comparison of the results with those of independent methods. Detection limits between 0.01 (Mg) and 8.5 μg/g (Co) were achieved.  相似文献   

19.
A technique for the separation of 42 trace elements from up to 5 g of molybdenum and tungsten matrices was developed by means of the radiotracer technique. It is based on adsorption of the analyses on the cation exchanger Dowex 50 W x 9 from a 4% H2O2/0.01 mol 1−1 HNO3 solution followed by their elution with 15 ml of 4 mol I−1 HNO3 in the opposite flow direction. Both matrices were removed with a separation factor > 104. The separation technique was applied to the analysis of these materials by electrothermal atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, inductively coupled plasma mass spectrometry and total reflection X-ray fluorescence spetrometry. For all the determination methods used, the limits of detection are given and compared with those of other methods. With inductively coupled plasma mass spectrometry, for 22 of the 30 assayed elements, limits of detection at the sub-ng g−1 level were achieved. The results are compared with those obtained by radiochemical neutron activation analysis in this work and by glow discharge mass spectrometry, secondary ion mass spectrometry, isotope dilution mass spectrometry and by solution spectrometric methods in other laboratories.  相似文献   

20.
Slurry sampling followed by electrothermal vaporization was used as sample introduction technique for digestion-free analysis of aluminium nitride and aluminium oxide by inductively coupled plasma atomic emission spectrometry. The vaporizer consisted of a tungsten coil in a quartz chamber. Spectral interferences and background emission caused by tungsten ablation from the coil were reduced by coating it with tungsten carbide. Different approaches for background correction techniques were considered. The analytes Ca, Cd, Co, Cr, Cu, Fe, Mg, Ni and Zn were determined simultaneously, whereas Mn and Na were determined in the sequential mode. Calibration was performed using the standard additions method. The accuracy was checked by comparison of the results with those of independent methods. Detection limits between 0.01 (Mg) and 8.5 μg/g (Co) were achieved. Received: 21 September 1998 / Revised: 30 October 1998 / Accepted: 3 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号