首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ion mobility in new fluoride glasses (mol %) 45ZrF4 · 25BiF3 · 30MF (I) (M = Li, Na, K), (70 - x)ZrF4 · xBiF3 · 30LiF (II) (15 ≤ x ≤ 35), and 45ZrF4 · (55-x)BiF3 · xMF (III) (M = Li, Na; 10 ≤ x ≤ 30) has been studied by 7Li, 19F, and 23Na NMR in the temperature range 250–500 K. The character of ion motion in bismuth fluorozirconate glasses I and III is determined by temperature and the nature and concentration of an alkali-metal cation. Major type of ion mobility in glasses I–III at temperature 400–440 K are local motions of fluorine-containing moieties and diffusion of lithium ions (except for the glass with x = 10). The factors responsible for diffusion in the fluoride sublattice of glasses I have been determined. Sodium ions in glasses I and III are not involved in ion transport.  相似文献   

2.
Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n?+?zH] z+ or [(H3PO4)n – zH] z– , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.
Figure
?  相似文献   

3.
4.
A simple and efficient approach as directly suspended droplet microextraction (DSDME) was applied to the determination of organochlorine pesticides in rice prior to analysis by gas chromatography-mass spectrometry (GC-MS). The extraction parameters such as organic solvent type and volume, extraction time, and ion strength were systemically optimized. Furthermore, method linearity, recovery, limits of detections (LODs), and precision were also investigated. The proposed method provided good linearity (R 2 = 0.9900–0.9996). LODs determined by GC-MS in selected-ion monitoring (SIM) mode were between 0.0005–0.033 mg/kg. The relative standard deviations (RSDs) varied from 2.0–14.0%, while the enrichment factors were between 221–550. The experimental results suggest that DSDME followed by GC-MS is a simple, sensitive, low-cost and little solvent consumption for the determination of organochlorine pesticides in rice, and has high enrichment factors suitable to trace analysis.  相似文献   

5.
Differential ion mobility spectrometry (DIMS) has the ability to separate gas phase ions based on their difference in ion mobility in low and high electric fields. DIMS can be used to separate mixtures of isobaric and isomeric species indistinguishable by mass spectrometry (MS). DIMS can also be used as a filter to improve the signal-to-background of analytes in complex samples. The resolving power of DIMS separations can be improved several ways, including increasing the dispersion field and increasing the amount of helium in the nitrogen carrier gas. It has been previously demonstrated that the addition of helium to the DIMS carrier gas provides improves separations when the dispersion field is the kept constant as helium content is varied. However, helium has a lower breakdown voltage than nitrogen. Therefore, as the percent helium content in the nitrogen carrier gas is increased, the highest dispersion field accessible decreases. This work presents the trade-offs between increasing dispersion fields and using helium in the carrier gas by comparing the separation of a mixture of isobaric peptides. The maximum resolution for a separation of a mixture of three peptides with the same nominal molar mass was achieved by using a high dispersion field (~72 kV/cm) with pure nitrogen as the carrier gas within the DIMS assembly. The conditions used to achieve the maximum resolution also exhibit the lowest ion transmission through the assembly, suggesting that it is necessary to consider the trade-off between sensitivity and resolution when optimizing DIMS conditions for a given application. Figure
?  相似文献   

6.
Presence of unresolved ion mobility (IM) profiles limits the efficient utilization of IM mass spectrometry (IM-MS) systems for isomer differentiation. Here, we introduce an automated ion mobility deconvolution (AIMD) computer software for streamlined deconvolution of overlapped IM-MS profiles. AIMD is based on a previously reported post-IM/collision-induced dissociation (CID) deconvolution approach [J. Am. Soc. Mass Spectrom. 23, 1873 (2012)] and, unlike the previously reported manual approach, it does not require resampling of post-IM/CID data. A novel data preprocessing approach is utilized to improve the accuracy and efficiency of the deconvolution process. Results from AIMD analysis of overlapped IM profiles of data from (1) Waters Synapt G1 for a binary mixture of isomeric peptides (amino acid sequences: GRGDS and SDGRG) and (2) Waters Synapt G2-S for a binary mixture of isomeric trisaccharides (raffinose and isomaltotriose) are presented. Graphical Abstract
?  相似文献   

7.
Previous experimental and theoretical work identified that the application of a static magnetic (B) field can improve the resolution of a quadrupole mass spectrometer (QMS) and this simple method of performance enhancement offers advantages for field deployment. Presented here are further data showing the effect of the transverse magnetic field upon the QMS performance. For the first time, the asymmetry in QMS operation with B x and B y is considered and explained in terms of operation in the fourth quadrant of the stability diagram. The results may be explained by considering the additional Lorentz force (v x B) experienced by the ion trajectories in each case. Using our numerical approach, we model not only the individual ion trajectories for a transverse B field applied in x and y but also the mass spectra and the effect of the magnetic field upon the stability diagram. Our theoretical findings, confirmed by experiment, show an improvement in resolution and ion transmission by application of magnetic field for certain operating conditions.
Figure
?  相似文献   

8.
Tetraamminecobalt hydrogen hexamolybdoferrate [Co(NH3)4] · H[FeMo6O18(OH)6] · 6H2O (I) and tetraamminecobalt hydrogen hexamolybdogallate(III) [Co(NH3)4] · H[GaMo6O18(OH)6] · 6H2O (II) were synthesized and studied by mass spectrometry, thermogravimetry, IR spectroscopy, and X-ray diffraction. Crystals of I and II are monoclinic; a = 16.21 Å, b = 5.43 Å, c = 12.32 Å, β = 119.63°, V = 1092.11 Å3, ρcalcd = 2.21 g/cm3, and Z = 1 for I; a = 16.24 Å, b = 5.59 Å, c = 12.29 Å, β = 119.79°, V = 1064.05 Å3, ρcalcd = 2.15 g/cm3, and Z = 1 for II. Compounds I and II were used as catalysts for soft oxidation of natural gas.  相似文献   

9.
Mass spectrometry has emerged as a powerful tool for the bioanalytical sciences because of its ability to characterize small and large biomolecules in vanishingly small amounts. A recurring motif in mass spectrometry aims to decipher the chemical composition of biological samples at the molecular level, requiring drastic improvements in the ability to interrogate well defined and highly spatially resolved areas of a sample surface. With the growth of novel ionization methods, numerous advances have been made in sampling biological tissue surfaces. Here, current advancements in ambient, inlet, and vacuum ionization methods are discussed with respect to the potential improvements in the goal of achieving high spatial resolution and/or fast surface analysis. Of similar importance is the need for improvements in applicable characterization strategies using high performance fragmentation technologies such as electron transfer dissociation and electron capture dissociation directly from surfaces, and gas-phase separation through ion mobility spectrometry and high resolution mass spectrometry.
Figure
?  相似文献   

10.
Fast-atom bombardment (FAB) mass spectrometry was used to investigate the interaction of proton and alkali metal ions with dinucleotide analogs such as T-n-T (T = thymine moiety, n = polyether chain, e.g., triethylene, tetraethylene, pentaethylene, and hexaethylene ether 1–4), A-n-T (A = adenine unit 5–8), and T-n-OMe (9–12) in 3-nitrobenzyl alcohol matrix. The [M + H]+ ion is the most abundant ion for the A-n-T series, whereas in 1–4 and 9–12 the (TC2H4)+ ion is the most abundant. Formation of [M + H -C2H4O]+ ions, a characteristic fragmentation of crown ethers under electron ionization, is observed for compounds 1–12 and is more pronounced in 6 and 7. An abundant [M ? H]? ion is observed for all the compounds studied under negative ion FAB due to the presence of the (-CO-NH-CO-) group of thymine, an indication of existence of intramolecular H bonding. The FAB mass spectra of 1–12 with alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) showed formation of abundant metal-coordinated ions ([M + Met]+ and [TC2H4 + Met]+). Compounds 3, 4, 6, 7, and 10–12 showed ions due to the substitution of the thymine moiety by a hydroxyl group ([M + Met ? 108]+, Met = metal ion). For compound 3 alone, substitution of two thymine groups ([M + Met - 216]+) was observed. Metastable ion studies were used to elucidate the structures of these potentially significant ions, and the ion formule were confirmed with high resolution measurements. Selectivity toward metal complexation with ligand size was seen in the T-n-T and A-n-T series and was even more pronounced in A-n-T series. These dinucleotide analogs fall in the following order of chelation of alkali metal ions, acyclic glymes < dinucleotide analogs (acyclic glymes substituted with nitrogen bases) < crown ethers, which places them in perspective as receptor models.  相似文献   

11.
The enantioselective interactions between chiral tetra-amidic receptors and nucleosides have been investigated by the ESI-IT-MS and ESI-FT-ICR-MS methodologies. Configurational effects on the CID fragmentation of diastereomeric [M H 2 ?H?A]?+ aggregates (A?=?2'-deoxycytidine dC, citarabine (ara-C) were found to be mostly offset by isotope effect in [S X 2 ?H?A]?+ (X?=?H, D) differently from the results obtained on the analogues (A?=?cytidine C and gemcitabine G). This result points the involvement of two different nucleoside/tetraamide isoforms. The structural differences of the [M H 2 ?H?A]?+ (A?=?C and G) complexes vs. the [M H 2 ?H?A]?+ (dC and ara-C) ones is fully confirmed by the kinetics of their uptake of the 2-aminobutane enantiomers, measured by FT-ICR mass spectrometry. Indeed, uptake of the 2-aminobutane enantiomers by [M H n ?H?A]?+ (n?=?1,2; A?=?dC and ara-C) complexes is reversible, while that by [M H n ?H?A]?+ (n?=?1,2; A?=?C and G) is not. The most encouraging result concerning the measured fragmentation and kinetic differences between C and ara-C, that are just epimers, indicates the possibility to subtly modulate the non-covalent drug/receptor interactions, through the electronic properties of the 2'-substituent on the nucleoside furanose ring, and furthermore on its three-dimensional position.  相似文献   

12.
Gas phase decarbonylation and cyclization reactions of protonated N-methyl-N-phenylmethacrylamide and its derivatives (M·H+) were studied by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). MS/MS experiments of M·H+ showed product ions were formed by loss of CO, which could only occur with an amide Claisen rearrangement. Mechanisms for the gas phase decarbonylation and cyclization reactions were proposed based on the accurate m/z measurements and MS/MS experiments with deuterated compounds. Theoretical computations showed the gas phase Claisen rearrangement was a major driving force for initiating gas phase decarbonylation and cyclization reactions of M·H+. Finally, the influence of different phenyl substituents on the gas phase Claisen rearrangement was evaluated. Electron-donating groups at the para-position of the phenyl moiety promoted the gas phase Claisen rearrangement to give a high abundance of fragment ions [M ? CO + H]+. By contrast, electron-withdrawing groups on the phenyl moiety retarded the Claisen rearrangement, but gave a fragment ion at m/z 175 by loss of neutral radicals of substituents on the phenyl, and a fragment ion at m/z 160 by further loss of a methyl radical.  相似文献   

13.
During their travel inside a traveling wave ion mobility cell (TW IMS), ions are susceptible to heating because of the presence of high intensity electric fields. Here, we report effective temperatures T eff,vib obtained at the injection and inside the mobility cell of a SYNAPT G2 HDMS spectrometer for different probe ions: benzylpyridinium ions and leucine enkephalin. Using standard parameter sets, we obtained a temperature of ~800 K at injection and 728?±?2 K into the IMS cell for p-methoxybenzylpyridinium. We found that T eff,vib inside the cell was dependent on the separation parameters and on the nature of the analyte. While the mean energy of the Boltzmann distributions increases with ion size, the corresponding temperature decreases because of increasing numbers of vibrational normal modes. We also investigated conformational rearrangements of 7+ ions of cytochrome c and reveal isomerization of the most compact structure, therefore highlighting the effects of weak heating on the gas-phase structure of biologically relevant ions.
Figure
?  相似文献   

14.
A simple and rapid liquid chromatography-tandem mass spectrometry method for Enalapril in human plasma was developed and applied to pharmacokinetic and bioequivalence test for 2 formulations of Enalapril (10 mg) capsules in healthy korean volunteers under fasting state. The analytes were extracted from plasma by simple protein precipitation by acetonitrile, separated on YMC C8 column using methanol-10 mM ammonium formate (80: 20, v/v) as the mobile phase, and detected by tandem mass spectrometry with Turbo IonSpray interface operating in the positive ion mode for Enalapril and Glibenclamide (IS) in MRM mode. The ionization was optimized using electro-spray ionization (ESI) (+) and selectivity was achieved by MS/MS analysis, m/z 376.447 → 234.1 for Enalapril and m/z 494.1 → 369.1 for IS. The assay exhibited good linearity in the concentration ranges of 1.0 ~ 300 ng/mL for Enalapril in human plasma with lower limit of quantification (LLOQ) of 1.0 ng/mL. The chromatographic run time was approximately 2.0 min. No endogenous compounds were found to interfere with the analysis. The accuracy and precision were acceptable for concentrations over the standard ranges. The method was successfully applied to pharmacokinetic (PK) and bioequivalence (BE) studies by determination of Enalapril in the blood sample taken up to 12 h after oral administration of two Enalapril (10 mg) formulations and results from PK analysis suggested that the 2 types of 10 mg Enalapril tablets should be considered to be bioequivalent for both the extent and rate of absorption in normal volunteers.  相似文献   

15.
Some new Schiff bases, (Z)-4-amino-3-((E)-(R-methoxybenzylidene)hydrazono)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L2), R?=?3 (L3) and R?=?4 (L4)), were synthesized by the condensation reactions of 4-amino-3-hydrazinyl-6-methyl-1,2,4-triazin-5(4H)-one (L1) and corresponding methoxybenzaldehyde in a molar ratio 1:1.5 in high yields. The reaction of L2 and L4 with an excess amount of the corresponding aldehydes gave the unsymmetrical bis-Schiff bases (E)-3-((E)-(R-methoxybenzylidene)hydrazono)-4-((E)-R-methoxybenzylideneamino)-6-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one (R?=?2 (L22) and R?=?4 (L44)), respectively. Furthermore, the reaction of L2?CL4 with silver(I) nitrate in a molar ratio 2:1 led to the silver(I)-complexes with the general formula [Ag(Lx)2]NO3 (Lx?=?L2 (2), L3 (3) and L4 (4)). All synthesized Schiff base compounds and complexes were characterized by a combination of IR-, 1H-NMR spectroscopy, mass spectrometry and elemental analyses. In addition, the structures of L2, L4·CH3CN, L22·CH3OH and L44·CH3OH and complexes 2 and 4 were determined by X-ray diffraction studies.  相似文献   

16.
Reactions of (norbornadiene)Cr(CO)4 or cis-(piperidine)2Mo(CO)4 with R2Sb-SbR2, and cyclo-(R′Sb)n (R′ = Et, n-Pr; n = 4, 5) give the complexes cyclo-[M(CO)4(R2Sb-SbR′- SbR′-SbR2)] (1: M = Cr, R = Me, R′= Et; 2: M = Mo, R = Et, R′ = Et; 3: M = Mo, R = Et, R′ = n-Pr). Not accessible to established characterization methods, the oily, extremely reactive unpurified mixture of 3 with scrambled ligands was characterized by mass spectrometry using liquid injection field desorption ionization (LIFDI).   相似文献   

17.
We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [?SO2(CH3); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O2) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases. Figure
?  相似文献   

18.
Cardiovascular diseases are the world’s number one cause of death, accounting for 17.1 million deaths a year. New high-resolution molecular and structural imaging strategies are needed to understand underlying pathophysiological mechanism. The aim of our study is (1) to provide a molecular basis of the heart animal model through the local identification of biomolecules by mass spectrometry imaging (MSI) (three-dimensional (3D) molecular reconstruction), (2) to perform a cross-species validation of secondary ion mass spectrometry (SIMS)-based cardiovascular molecular imaging, and (3) to demonstrate potential clinical relevance by the application of this innovative methodology to human heart specimens. We investigated a MSI approach using SIMS on the major areas of a rat and mouse heart: the pericardium, the myocardium, the endocardium, valves, and the great vessels. While several structures of the heart can be observed in individual two-dimensional sections analyzed by metal-assisted SIMS imaging, a full view of these structures in the total heart volume can be achieved only through the construction of the 3D heart model. The images of 3D reconstruction of the rat heart show a highly complementary localization between Na+, K+, and two ions at m/z 145 and 667. Principal component analysis of the MSI data clearly identified different morphology of the heart by their distinct correlated molecular signatures. The results reported here represent the first 3D molecular reconstruction of rat heart by SIMS imaging.
Figure
Workflow of the 3D reconstruction. A Tissue section, B gold deposition is done by sputter coating, C, C1 SIMS-ToF mass analyzer, C, C2 mass spectral peaks, C, C3 datacube images; D, E Reconstruction of the heart showing 3D-spatial distributions of three different ions 145 m/z (red), 23 m/z (green), and 39 m/z (blue); F coregistration of 40 individual MS imaging  相似文献   

19.
Photoionization mass spectrometry was used to investigate the dynamics of ion-neutral complex-mediated dissociations of the n-pentane ion (1). Reinterpretation of previous data demonstrates that a fraction of ions 1 isomerizes to the 2-methylbutane ion (2) through the complex CH3CH+CH 3 · CH2CH3 (3), but not through CH3CH+CH2CH 3 · CH3 (4). The appearance energy for C3Hin 7 + formation from 1 is 66 kJ mol?1 below that expected for the formation of n-C3H 7 + and just above that expected for formation of i-C3H 7 + . This demonstrates that the H shift that isomerizes C3H 7 + is synchronized with bond cleavage at the threshold for dissociation to that product. It is suggested that ions that contain n-alkyl chains generally dissociate directly to more stable rearranged carbenium ions. Ethane elimination from 3 is estimated to be about seven times more frequent than is C-C bond formation between the partners in that complex to form 2, which demonstrates a substantial preference in 3 for H abstraction over C-C bond formation. In 1 → CH3CH+CH2CH3 + CH3 by direct cleavage of the C1–C2 bond, the fragments part rapidly enough to prevent any reaction between them. However, 1 → 2 → 4 → C4H 8 + + CH4 occurs in this same energy range. Thus some of the potential energy made available by the isomerization of n-C4H9 in 1 is specifically channeled into the coordinate for dissociation. In contrast, analogous formation of 3 by 1 → 3 is predominantly followed by reaction between the electrostatically bound partners.  相似文献   

20.
In this study, non-covalent binding interactions of the hexaarylbenzene-based receptor (R) with the potassium cation have been investigated. Employing quantum mechanical density functional theory calculations, the most probable structure of the KR + complex species was predicted. In this complex, the K+ cation synergistically interacts with the polar ethereal oxygen fence and with the central hydrophobic benzene bottom via cation?C?? interaction. The strength of the KR + complex was evaluated experimentally by affinity capillary electrophoresis. From the dependence of the effective electrophoretic mobility of the receptor R on the concentration of the potassium ion in the background electrolyte, the thermodynamic binding (stability, association) constant (K KR) of the KR + complex in methanol was evaluated as log10?K KR?=?3.20?±?0.22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号