首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Y2O3粗粉、Nd2O3、硝酸和NH4HCO3为原料,通过共沉淀法制备了Nd3+:Y2O3透明激光陶瓷纳米粉体,并采用TG/DTA、XRD、FTIR、TEM以及EDS等测试方法对粉体性能进行了表征.结果表明,在先驱物中添加适量SO42-离子能减轻煅烧得到的Nd3+:Y2O3粉体的团聚,使粉体粒度均匀并呈球形分布.在1100 ℃煅烧4 h所得粉体粒度均匀,粒径在50~70 nm之间,具有较好的分散性,适合作为制备透明激光陶瓷的粉体材料.  相似文献   

2.
Nd^3+:Gd0.2Y0.8Al3(BO3)4激光晶体的研究   总被引:2,自引:0,他引:2  
  相似文献   

3.
Nd^3+:KGd(WO4)2激光晶体的研究   总被引:5,自引:6,他引:5  
合成了一系列不同Nd  相似文献   

4.
Nd^3+:Gd3Ga5O12晶体的室温吸收光谱和荧光光谱   总被引:1,自引:0,他引:1  
用提拉法生长了掺钕的钆镓石榴石 (Nd3 + :GGG)激光晶体。研究了室温下的吸收光谱和荧光光谱性质 ,分析了Nd3 + :GGG晶体4F3 / 2 →4I11/ 2 能级跃迁与 1.0 6 μm附近的荧光谱线之间的关系。吸收系数、发射系数、荧光寿命分别是 4 .32× 10 -2 0 cm-2 ,2 .3× 10 -19cm-2 ,2 4 0 μs,比较了Nd3 + ∶GGG和Nd3 + ∶YAG的物理参数 ,实验表明 :Nd3 + ∶GGG较Nd3 + ∶YAG有一系列的优点。  相似文献   

5.
以ZrOCl2·8H2O、Al(NO3)3·9H2O、Y(NO3)3为原料,NH4HCO3 (AHC)为络合剂,采用共沉淀法制备Al2 O3-ZrO2复合纳米粉体.利用X射线衍射分析(XRD)、扫描电镜(SEM)、透射电子显微镜(TEM)、激光粒度分析仪等对Al2 O3-ZrO2复合粉体进行测试表征,详细研究了pH和AHC/Zr摩尔比对复合粉体的影响.结果表明,当前驱体的煅烧温度低于1200℃时,只形成t-ZrO2相,当煅烧温度达到1300℃时,α-Al2O3相开始形成;沉淀反应的pH和AHC/Zr摩尔比对Al2O3-ZrO2复合粉体的产率有很大的影响.在pH7、AHC/Zr =4.5:1的条件下制备前驱体,经过1300℃煅烧2h得到两相纯度高,分散性能好,粒度分布窄,平均粒径为0.75 μm的Al2O3-ZrO2复合粉体.  相似文献   

6.
采用顶部籽晶法生长Nd^3+:Na3La9O3(BO3)8晶体。在室温下测试了吸收光谱、发射光谱和荧光寿命。应用Judd-Ofelt理论评价了Nd^3+:Na3La9O3(BO3)8晶体的光谱性能。812nm处较宽的吸收峰适合AlGaAs LD泵浦的吸收。分别计算了Nd^3+离子的唯象强度、谱线强度、辐射寿命、荧光分支比和荧光量子效率。  相似文献   

7.
以稀土硝酸盐和NH4HCO3作为原料,采用共沉淀法合成用于制备Eu掺杂Lu2O3-Gd2O3固溶体透明陶瓷的一系列(Gd0.95-xLuxEu0.05)2O3(x=0~0.95)纳米粉体,并利用XRD、SEM、TEM、BET和TMA手段对合成粉体的性能进行表征.结果表明,经800 ℃煅烧后的粉体均为立方相的(Gd0.95-xLuxEu0.05)2O3,粉体颗粒细小,呈近球形,且颗粒尺寸分布较均匀.将合成的一系列纳米粉体压制成型,于1700 ℃真空烧结24 h得到了透明性良好的(Gd0.45Lu0.5Eu0.05)2O3和(Lu0.95Eu0.05)2O3透明陶瓷,其在可见光区的最高直线透过率分别为53.5;和62.3;.在254 nm激发下,透明陶瓷在612 nm处均呈现出很强的Eu3+的红光发射.(Gd0.45Lu0.5Eu0.05)2O3透明陶瓷中由于存在Gd3+向Eu3+的有效地能量传递,其发光强度是(Lu0.95Eu0.05)2O3透明陶瓷的1.7倍.  相似文献   

8.
Ti:Al2O3透明多晶陶瓷光谱特性分析   总被引:4,自引:0,他引:4  
采用传统无压烧结工艺制备出透明性良好的掺Ti氧化铝陶瓷;测定了该陶瓷的吸收光谱、荧光光谱和激发光谱.结果表明,掺Ti氧化铝透明陶瓷样品在Mg与Ti掺入离子的摩尔比(NMg/NTi)较小时,表现出Ti3+离子的490nm特征吸收峰,即2T2→2E跃迁产生的宽带吸收;NMg/NTi较大时,陶瓷样品吸收光谱中不存在Ti3+离子吸收,其250nm处吸收为O2-→Ti4+的转移吸收.掺Ti氧化铝透明陶瓷样品Ti3+离子的发射谱线与单晶的相吻合,同时Ti3+在氧化铝陶瓷中分布很均匀,且Ti3+浓度较高时仍处于未畸变的八面体格位当中.氢气氛下烧结的陶瓷样品因MgO添加剂的存在而在410nm处产生Ti4+离子荧光发射;而280nm、420nm左右的荧光发射分别是由F+和F心造成的.  相似文献   

9.
以硝酸钇、硝酸镁、乙酸镁为原料,采用微波诱导燃烧法合成了体积比50:50的MgO-Y2O3纳米粉体,并研究了粉体的烧结性能.采用DSC-TGA、XRD、SEM、BET、IR等手段对粉体进行了分析表征.研究表明,在500 W微波功率下合成的粉体,经过600℃煅烧2h,结晶性良好,呈现均匀球状,粒度尺寸在30 ~50nm之间,比表面积为35.6m2/g.粉体经过200 MPa压力下等静压成型后,在1300℃温度下保温2h,样品相对密度可达95;.  相似文献   

10.
以Y2O3为基质材料,Yb3+为敏化剂,Tm3+为激活剂,采用化学共沉淀法制备Y2O3∶Yb3+,Tm3+纳米粉体,通过差热、红外光谱、XRD、荧光、上转换发光和场发射电子显微镜等方法对样品进行表征.结果表明:Tm3+和Yb3+完全固溶到Y2O3立方晶格中,且粉体大小均匀,尺寸约50 nm;Yb3+浓度为4;(摩尔分数)、煅烧温度900 ℃时,荧光和上转换发光强度最强;Tm3+浓度为0.4;时绿光(5F4/5S2→5I8)和红光(2F5/2→2F7/2)荧光强度最强,浓度0.5;时蓝光(1G4→3H6)和红光(1G4→3F4)的上转换发射强度最大.  相似文献   

11.
采用凝胶注模成型工艺制备了Y2O3陶瓷部件,研究了分散剂加入量、pH值和固相含量对浆料粘度影响,单体、交联剂、引发剂、催化剂和温度对凝胶反应时间的影响,以及烧结后陶瓷制品的线收缩率.结果表明最佳工艺参数为:分散剂聚丙烯酸铵加入量为0.8vol;,pH值为9,固相含量为65vol;,浆料的粘度为1.07 Pa·s;单体丙烯酰胺为3.5wt;,交联剂N,N'-亚甲基双丙烯酰胺为0.35wt;,引发剂5wt;过硫酸铵溶液为0.9vol;,催化剂N,N,N',N'-四甲基乙二胺为0.2vol;,反应温度为50℃,凝胶反应时间为25 min.在2000℃温度下烧结后,陶瓷制品的最小线收缩率为3.0;.  相似文献   

12.
以In(NO3)3·4.5H2O为原料,采用室温固相合成法、化学共沉淀法、均匀沉淀法、溶胶-凝胶法、微乳液法、水热法等六种不同方法制备In2O3纳米粉体.通过XRD、SEM、TEM等手段对粉体的物相、形貌、粒度等进行表征.结果表明,室温固相合成法、化学共沉淀法和水热法制备的粉体形貌为棒状,微乳液法、溶胶-凝胶法和均匀沉淀法制备的粉体形貌为粒径非常小的颗粒状.均匀沉淀法制备的In2O3气敏元件对Cl2具有最高的灵敏度,110 ℃工作温度下对100 ppm Cl2的灵敏度高达1175,且具有选择性好,响应-恢复时间短等特性.  相似文献   

13.
刘聪  郭伟明  赵哲  伍尚华 《人工晶体学报》2017,46(12):2352-2355
以α-Si3N4粉为原料,通过添加不同含量的Y2O3-Al2O3烧结助剂(6wt;、8wt;和10wt;),在1800℃下采用热压烧结制备了Si3 N4陶瓷,研究了Y2 O3-Al2 O3含量对Si3 N4陶瓷的物相、致密度、显微结构与力学性能的影响,结果表明:添加6wt;的Y2 O3-Al2 O3助剂即可获得高致密的Si3 N4陶瓷,继续增加助剂含量对Si3 N4陶瓷的致密度影响不大,但是显著影响 α-Si3 N4相和β-Si3 N4相的含量,较高的Y2 O3-Al2 O3助剂含量有利于α-Si3 N4转化为β-Si3 N4.不依赖于Y2 O3-Al2 O3助剂含量,Si3 N4陶瓷均包含细小的等轴晶粒和大尺寸的棒状晶粒,呈现双峰结构,但是Y2 O3-Al2 O3助剂含量增加到10wt;时,可以显著增加棒状晶粒的数量,形成更显著的双峰结构.基于当前研究,发现加入低含量的Y2O3-Al2O3助剂(6wt;),可以获得高硬度高强度的Si3N4陶瓷,而引入高含量的Y2O3-Al2O3助剂(10wt;),则可以获得高韧性高强度的Si3N4陶瓷.  相似文献   

14.
2 μm 波段处于人眼安全波长,在医疗、加工、红外探测与对抗,以及大气环境监测等军、民两用领域有着重要潜在和实际应用。Ho3+掺杂倍半氧化物陶瓷具有宽的吸收和发射光谱、高热导率以及低声子能量等优点,是一类重要的 2 μm 波段激光材料。通过材料固溶原理,可以实现光谱更加宽化,这使其有可能成为一类性能优异的中红外固体激光材料。本文以商业Y2O3、Sc2O3以及Ho2O3粉体为原料,添加少量ZrO2(原子比为0~1.0%)作为烧结助剂,采用真空预烧,结合热等静压烧结的工艺,成功制备出高透明的0.5%Ho∶(Y0.7Sc0.3)2O3陶瓷。研究了ZrO2掺杂浓度(0~1.0%)对Ho∶(Y0.7Sc0.3)2O3激光陶瓷致密化过程和光学性能的影响。通过添加ZrO2有效抑制了高温下Ho∶(Y0.7Sc0.3)2O3陶瓷晶粒的生长,掺杂1.0%ZrO2的Ho∶(Y0.7Sc0.3)2O3陶瓷经1 690 ℃下真空预烧结4 h和1 600 ℃/190 MPa热等静压烧结3 h后,其透过率在1 100 nm处达到79.1%(厚度为4.4 mm),接近理论透过率。  相似文献   

15.
用共沉淀法合成Gd2Ti2O7纳米粉体,经真空烧结制备不同ZrO2(3Y)含量的Gd2Ti2O7/ZrO2(3Y)陶瓷。用XRD、SEM和力学性能试验等测试手段研究样品的物相、形貌和力学性能。结果表明:Gd2Ti2O7/ZrO2(3Y)陶瓷的力学性能随ZrO2(3Y)含量增加显著提高,ZrO2(3Y)含量为90vol%时,样品的维氏硬度、抗弯强度和断裂韧性最大值分别达到20.95GPa、199.21MPa和8.17MPa·m1/2。其原因是ZrO2(3Y)固溶导致晶粒尺寸减小,过饱和析出ZrO2(3Y)的颗粒弥散增韧,以及ZrO2(3Y)应力诱导相变增韧作用。  相似文献   

16.
以碳化硅为主要原料,以羟丙基甲基纤维素(HPMC)为粘结剂,以Al2O3和Y2O3作为复合烧结助剂,采用挤出成型工艺制备出碳化硅多孔蜂窝陶瓷.探究了复合助剂Al2O3/Y2O3的加入量对蜂窝陶瓷物相组成和微观形貌的影响;研究了烧结温度对碳化硅陶瓷物相、微观形貌以及孔隙率、线收缩率、体积密度、抗压强度的影响规律.结果表明:Al2O3/Y2O3复合助剂的加入量增大和烧结温度的提高,陶瓷液相量增多;在钇铝石榴石(YAG)的共晶点1760 ℃附近,更易于析出结晶形成YAG相.烧结温度升高,陶瓷收缩率增大;体积密度和抗压强随烧结温度变化规律接近;体积密度和抗压强度在1750℃达到最大值分别为1.8 g/cm3和14.09 MPa.  相似文献   

17.
用低温燃烧合成的陶瓷粉体为原料,在1450℃下烧结制备了多孔Al2O3/ZrO2 (3mol; Y2O3)陶瓷,并研究ZrO2的外加量(Omol;、1Omol;、15mol;和20mol;)对多孔陶瓷显气孔率、抗弯强度、孔径分布和显微结构的影响.实验结果表明:与其他试样相比,ZrO2外加量为15mol;的试样的显气孔率和抗弯强度都明显提高,其最可几孔径约为1.1 μm.SEM和EBSD图片显示:外加ZrO2能显著影响多孔陶瓷的显微结构,其中外加15mol; ZrO2的多孔陶瓷中,氧化铝晶粒的平均尺寸较小,颈部较厚,这是其具有较高抗弯强度的主要原因.  相似文献   

18.
利用激光近净成形技术及未添加任何粘结剂的纯陶瓷粉末直接制备了Al2O3/ZrO2共晶陶瓷薄壁结构,对成形工艺进行了研究,获得了优化的工艺参数范围,并利用XRD、SEM及显微硬度测量等手段对成形样件的化学成分、微观组织、硬度及断裂韧性等进行了分析.结果表明,随激光功率的增加,成形件的裂纹呈先减少后增多的规律,裂纹数量在激光功率为454 W时开始明显减少,而当超过582 W时则又开始逐渐增多.成形样件的微观组织为共晶间距约100 nm的致密共品组织,主要由稳定的α-Al2O3与t-ZrO2构成,微观硬度最高可达17.5 GPa,断裂韧性为4.8 ±0.3 MPa·m1/2,达到了传统方法的制备水平.该研究表明激光近净成形技术基于陶瓷材料的熔化-凝固成形,为直接快速制备高性能陶瓷结构提供了一种全新的选择.  相似文献   

19.
采用固相反应法制备了TiO2掺杂的ZnO-Bi2O3-Co2O3-MnCO3系低压压敏陶瓷.采用X射线衍射、扫描电镜、压敏电阻直流参数仪、阻抗分析仪等研究了掺杂量对陶瓷的微结构、压敏性能和阻抗等影响.结果表明:掺杂1.0mol;TiO2时综合电性能最好,压敏电压梯度为21.6 V/ mm,漏电流密度为0.02 μA/ mm2,非线性系数为33;掺杂最大于1.0 mol;时,压敏电压梯度降低的同时也使非线性系数降低,漏电流密度增大;Cole-Cole形式的复阻抗谱图表明掺杂1.0 mol;TiO2的晶界电阻最大,晶界电阻对ZnO-Bi2O3-Co2O3-MnCO3-TiO2系低压压敏陶瓷电阻的贡献最为明显.  相似文献   

20.
张笑  梁森 《人工晶体学报》2018,47(12):2555-2560
研究了氢气氛、真空烧结条件下制备的氧化铝透明陶瓷的烧结致密化过程及烧结动力学.结果表明:由Johnson烧结模型计算得到材料在不同烧结条件下的烧结激活能,真空快速烧结下的烧结激活能和晶粒生长激活能显著低于氢气氛条件下的激活能值,且在致密化同时晶粒不断长大,扩散控制机制均为晶界扩散.真空快速烧结条件更有利于材料的烧结致密化,在较低温度短时间烧结得到高致密度材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号