首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
讨论了NiCl2(bpy)3(bpy:2,2-联吡啶)在DMF中的电化学行为. 控制电位使电极过程处于扩散控制下, 采用计时电量法求得了29 ℃时NiCl2(bpy)3在DMF中的扩散系数为5.99×10-6 cm2•s-1, 不同温度下的扩散系数随温度升高而增大. 选择合适的电极电位, 使电极过程处于扩散和电化学混合控制下, 采用计时电量法求得了不同电极电位下的反应速率常数kf, 以及不同温度下的标准速率常数k0, 求得了表观活化能为14.4 kJ•mol-1.  相似文献   

2.
《Electroanalysis》2004,16(8):650-655
An analytical solution is developed for heterogeneous ECE processes occurring at channel electrode surface for both laminar and turbulent flow. The solution explicitly links the behavior of ECE processes and the parameters. A simple expression of the effective number of electrons transferred, covering all the reaction rate constants and different diffusion coefficients of the reactant A and the intermediate product B, is obtained. Excellent agreement with previous numerical and analytical results is shown . Parametric studies illustrate the effects of diffusion coefficients, hydrodynamic factors and reaction rate constants on the effective number of electrons transferred and the currents.  相似文献   

3.
A spatially intermittent polymerization (SIP) reactor has been used for determination of absolute rate constants in photo-initiated, free-radical polymerization of styrene (STY) and methyl methacrylate (MMA). Experimental data are reported in the temperature range 15-30°C and in the high molecular weight region for MMA and STY. Additional experimental data are reported at 30° C and various lower molecular weights for STY which indicate that the propagation rate constant K is independent of polymer molecular weight, and K is dependent on molecular weight, especially at low molecular weight, approaching an approximately constant value at high molecular weight.  相似文献   

4.
Photolysis experiments were performed on the H2-CD4-NH3 and the He-CD4-NH3 systems. The photolysis (1849 angstoms) involved only NH3. Mixtures of H2:CD4:NH3 included all combinations of the ratios (200,400,800):(10,20,40):4. Two He:CD4:NH3 mixtures were examined where the ratios equalled the combinations 100:(10,20):4. Abstraction of a D from CD4 by the photolytically produced hot hydrogen from ammonia was monitored by mass spectrometric determination of HD. Both experiment and semiempirical hot-atom theory show that H2 is a very poor thermalizer of hot hydrogens with excess kinetic energy of about 2 eV. Applications of the hard-sphere collision model to the H2-CD4-NH3 system results in predicted ratios of net HD production to NH3 decomposition that were two orders of magnitude smaller than the experimental ratios. On the other hand, helium is found to be a very efficient thermalizer; here, the classical model yields reasonable agreement with experiments. Application of a semiempirical hot-atom program gave quantitative agreement with experiment for either system.  相似文献   

5.
We have studied 18 reactions, including four identity reactions, involving transfer of a dimethylcarbamoyl group with N-acylpyridinium bonds to pyridine and its 4-substituted derivatives in acetonitrile solutions at 298 K. The rate constants k ij varied within the range 0.4 to 10–6 L/mol·s; the equilibrium constants K ij varied from 107 to 10–5. The rate and equilibrium for exchange of carbamoyl groups are described satisfactorily by the Brönsted equation. We have shown that all the reactions occur according to a forced concerted S N2 mechanism. The structure of the transition state and its position on the reaction coordinate for identity transfer are considered using a More O'Ferrall-Jencks diagram.  相似文献   

6.
Absolute rate constants for the addition of the highly nucleophilic 2-hydroxy-2-propyl radical to eight fast-reacting 1- and 1,1-disubstituted alkenes in MeOH at room temperature have been determined by laser flash photolysis. Also the absorption spectra of the 2-hydroxy-2-propyl and the benzylic and alkyl-type adduct radicals are presented. The rate constants were obtained using various methods for the analysis of the kinetic traces and support earlier findings.  相似文献   

7.
Absolute rate constants and their temperature dependence were determined by time-resolved electron spin resonance for the addition of the radicals Ph?H2 and Ph?Me2 to a variety of alkenes in toluene solution. To vinyl monomers CH2=CXY, Ph?H2 adds at the unsubstituted C-atom with rate constants ranging from 14 M ?1S ?1 (ethoxyethene) to 6.7 · 103 M ?1S ?1 (4-vinylpyridine) at 296 K, and the frequency factors are in the narrow range of log (A/M ?1S ?1) = 8.6 ± 0.3, whereas the activation energy varies with the substituents from ca. 51 kJ/mol to ca. 26 kJ/mol. The rate constants and the activation energies increase both with increasing exothermicity of the reaction and with increasing electron affinity of the alkenes and are mainly controlled by the reaction enthalpy, but are markedly influenced also by nucleophilic polar effects for electron-deficient substrates. For 1,2-disubstituted and trisubstituted alkenes, the rate constants are affected by additional steric substituent effects. To acrylate and styrenes, Ph?Me2 adds with rate constants similar to those of Ph?H2, and the reactivity is controlled by the same factors. A comparison with relative-rate data shows that reaction enthalpy and polar effects also dominate the copolymerization behavior of the styrene propagation radical.  相似文献   

8.
The production and reactions of vinyl radicals and hydrogen atoms from the photolysis of vinyl iodide (C2H3I) at 193 nm have been examined employing laser photolysis coupled to kinetic-absorption spectroscopic and gas chromatographic product analysis techniques. The time history of vinyl radicals in the presence of hydrogen atoms was monitored using the 1,3-butadiene (the vinyl radical combination product) absorption at 210 nm. By employing kinetic modeling procedures a rate constant of 1.8 × 10?10 cm2 molecule?1 s?1 for the reaction C2H3 + H has been determined at 298 K and 27 KPa (200 torr) pressure. A detailed error analysis for determination of the C2H3 + H reaction rate constant, the initial C2H3 and H concentrations are performed. A combined uncertainty of ±0.43 × 10?10 cm2 molecule?1 s?1 for the above measured rate constant has been evaluated by combining the contribution of the random errors and the systematic errors (biases) due to uncertainties of each known parameter used in the modeling. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Thermal rate constants for the prototypical water‐forming reaction H2+OH→H+H2O were obtained for temperatures between 150 K and 600 K by rigorous quantum dynamics calculations including all degrees of freedom. Results are reported for a recent, highly accurate neural network potential (NN1) and compared to results obtained on a previous, semi‐empirical potential (SE). The rate constants computed on both potentials significantly differ in their temperature dependence, and differences of over one order of magnitude in the rates were found. The rate constants computed for the NN1 potential compare very well to experimental work. Furthermore, the influence of overall rotation is discussed for the title reaction. While previous close‐coupling simulations were limited to thermal rate constants above room temperature, we report rate constants for temperatures as low as 250 K. The high‐level results reported here provide an accurate benchmark for the development of approximate methods for the calculation of thermal as well as microcanonical rate constants.  相似文献   

10.
The shock‐tube technique has been used to investigate the reactions H + SiH4 → H2 + SiH3 (R1) and H + Si(CH3)4 → Si(CH3)3CH2 + H2 (R2) behind reflected shock waves. C2H5I was used as a thermal in situ source for H atoms. For reaction (R1), the experiments covered a temperature range of 1170–1251 K and for (R2) 1227–1320 K. In both cases, the pressures were near 1.5 bar. In these experiments, H atoms were monitored with atomic resonance absorption spectrometry. Fits to the H‐atom temporal concentration profiles applying postulated chemical kinetic reaction mechanisms were used for determining the rate constants k1 and k2. Experimental rate constants were well represented by the Arrhenius equations k1(T) = 2.75 × 10−9 exp(−37.78 kJ mol−1/RT) cm3 s−1 and k2(T) = 1.17 × 10−7 exp(−86.82 kJ mol−1/RT) cm3 s−1. Transition state theory (TST) calculations based on CBS‐QB3 and G4 levels of theory show good agreement with experimentally obtained rate constants; the experimental values for k1 and k2 are ∼40% lower and ∼50% larger than theoretical predictions, respectively. For the development of a mechanism describing the thermal decomposition of tetramethylsilane (Si(CH3)4; TMS), also TST‐based rate constants for reaction CH3 + Si(CH3)4 → Si(CH3)3CH2 + CH4 (R3) were calculated. A comparison between experimental and theoretical rate constants k2 and k3 with available rate constants from the literature indicates that Si(CH3)4 has very similar reactivity toward H abstractions like neopentane (C(CH3)4), which is the analog hydrocarbon to TMS. Based on these results, the possibility of drawing reactivity analogies between hydrocarbons and structurally similar silicon‐organic compounds for H‐atom abstractions is discussed.  相似文献   

11.
In order to study collisions between ions and neutrals, a new Guided Ion Beam (GIB) apparatus, called NOVion, has been assembled and tested. The primary purpose of this instrument is to measure absolute cross sections at energies relevant for technical or inter- and circumstellar plasmas. New and improved results are presented for forming H3+ in collisions of H2+ with H2. Between 0.1 eV and 2 eV, our measured effective cross sections are in good overall agreement with most previous measurements. However, at higher energies, our results do not show the steep decline, recommended in the standard literature. After critical evaluation of all experimental and theoretical data, a new analytical function is proposed, describing properly the dependence of the title reaction on the collision energy up to 10 eV.  相似文献   

12.
The kinetics and mechanisms of H atom abstraction reactions from CH3NHNH2 by NO2 (R1) and related reactions have been investigated theoretically by using ωB97X‐D and CCSD(T)‐F12 quantum chemical calculations and the steady‐state unimolecular master equation analysis based on Rice–Ramsperger–Kassel–Marcus (RRKM) theory. For reaction (R1), both dissociation and isomerization steps between intermediate complexes were found to be important for the distribution of the dissociated bimolecular products. The dominant products of (R1) were found to be cis‐CH3NHNH and HONO at lower temperature. The branching ratios for CH3NNH2 formation paths increased with increasing temperature. On the same reaction potential energy surface, six reactions including isomerization reactions between CH3NNH2 and cis‐/trans‐CH3NHNH catalyzed by HONO were suggested to compete with the reverse reaction of (R1). The temperature‐ and pressure‐dependent rate expressions are proposed for kinetic modeling.  相似文献   

13.
反应挤出接枝共聚反应表观链增长常数的测量   总被引:3,自引:1,他引:3  
以预辐照的LLDPE反应挤出接枝MAA作为研究对象,通过在双螺杆挤出机中的不同部位取样,用FFIR分析接枝物及均聚物的产量,并用ESR测试链增长自由基浓度,设计了测定接枝和均聚反应初始阶段的表观链增长常数的方法,结果表明,在本实验测试范围内表观接枝链增长常数不同于均聚链增长常数;所得的测量值符合理论预测值,证明测试方法适合高温熔融体系的研究。  相似文献   

14.
Chemically activated CF3SH, CFCl2SH, and CF2ClSH were formed through combination of SH and CF3, CFCl2, and CF2Cl radicals, respectively. The SH radical was prepared by abstraction of an H‐atom from H2S by the halocarbon radical produced during photolysis of (CF3)2C=O, (CFCl2)2C=O, or (CF2Cl)2C=O. 1,2‐HX (X = F, Cl) elimination reactions were observed from CF3SH, CFCl2SH, and CF2ClSH with products detected by GC‐MS. The combination reaction of CF2Cl radicals with SH radicals prepared CF2ClSH molecules with approximately 318 kJ/mol of internal energy. The experimental rate constants for elimination of HCl and HF from CF2ClSH were 3 ± 3 × 1010 and 2 ± 1 × 109 s?1, respectively. Comparison to Rice–Ramsperger–Kassel–Marcus (RRKM) calculated rate constants assigned the threshold energies as 171 ± 12 and 205 ± 12 kJ/mol for the unimolecular elimination of HCl and HF, respectively. Theoretical calculations using the B3PW91, MP2, and M062X methods with the 6311+G(2d,p) and 6‐31G(d',p') basis sets established that for a specific method the threshold energies differ by only 4 kJ/mol between the two different basis sets. There was wide variation among the three methods, but the M062X approach appeared to give threshold energies closest to the experimental values. Chemically activated CF3SH and CFCl2SH were also prepared with about 318 kcal mol?1 of internal energy, and the HX (X = F, Cl) elimination reactions were observed. Only HCl loss was detected from CFCl2SH, but the rate was too fast to measure with our kinetic method; however, based on our detection limit the HF elimination channel is at least 50 times slower.  相似文献   

15.
Haitao Wang 《Acta Physico》2008,24(6):945-950
The rate constants for the reactions between •OH and six reduced sulfur compounds in air, N2, and O2 were measured using relative rate constant method in a 180-L Teflon bag at 298 K and 1.013×105 Pa. These results were compared with previous published data and were discussed in terms of trends in different buffer gases.  相似文献   

16.
CCl2(A1B1和a3B1)被酮类分子猝灭速率常数的测定   总被引:2,自引:0,他引:2  
对CCl4/Ar混合气体脉冲直流高压放电产生CCl2自由基,经过约110μs后,再用541.52mm激光将电子基态CC2激励到激发态A1B1(0,4,0)振动态K=0能级上,通过检测激发态CCl2(A)时间分辨荧光信号,测得室温下CC2(A1B1和a3B1)被酮类分子猝灭的实验结果,用所提出的三能级模型分析处理实验数据,获得态分辨速率常数KA和Ka值.  相似文献   

17.
For the first time, propagation rate coefficients, kp,COPO, for the copolymerizations of vinylidene fluoride and hexafluoropropene have been determined. The kinetic data was determined via pulsed‐laser polymerization in conjunction with polymer analysis via size‐exclusion chromatography, the PLP‐SEC technique. The experiments were carried out in homogeneous phase with supercritical CO2 as solvent for temperatures ranging from 45 to 90 °C. Absolute polymer molecular weights were calculated on the basis of experimentally determined Mark–Houwink constants. The Arrhenius parameters of kp,COPO vary significantly compared with ethene, which is explained by the high electronegativity of fluorine and less intra‐ and intermolecular interactions between the partially fluorinated macroradicals.  相似文献   

18.
The coherent excitation of H(n=2) in H+, H - He collisions was investigated at incident energies of 5–25 keV. From a polarization analysis of the emitted Lyman-α radiation as a function of an external electric field, the partial cross sections for excitation to the H(2s) and the H(2p m) magnetic substates and the real part of thes ?p 0-coherence were extracted. For H+-He collisions, the measured partial cross sections are in fair agreement with previous two-electron calculations by Kimura and Lin; the agreement with one-electron calculations of Jain et al. is, particularly at the lower incident energies, less satisfactory. For both collision systems, an energy-dependent forward-backward asymmetry corresponding to a shift of the center-of-charge relative to the center-of-mass (dipole moment) was observed. In H+ - He collisions, the measured dipole moment was positive; it thus corresponds to an electron trailing behind the proton. The same analysis applied to the H - He system showed the electron riding in front of the proton.  相似文献   

19.
Classical trajectory calculations for the rotational excitation of CO and H2 by collision with He have been carried out and compared to the accurate quantum mechanical calculations of other workers. The agreement is reasonably encouranging, although some inherent limitations of this strictly classical approach are observed and discussed.  相似文献   

20.
利用自制的烟雾箱系统研究了臭氧与二乙胺和三乙胺的气相反应动力学. 实验过程中保证二乙胺和三乙胺浓度远远大于臭氧浓度, 使得实验在准一级条件下进行. 加入环己烷以消除实验过程中可能产生的OH自由基对反应的影响. 在(298±1) K和1.01×105 Pa条件下, 测得臭氧与二乙胺和三乙胺反应的绝对速率常数值分别为(1.33±0.15)×10-17和(8.20±1.01)×10-17 cm3·molecule-1·s-1. 与文献中已有的其它胺类的臭氧反应数据比较后发现, 臭氧与胺的反应可以用亲电反应机制来解释. 另外, 通过对比发现, 臭氧与三取代的烷基胺类的反应速率要远远大于其与二取代的烷基胺类的反应速率. 这在一定程度上可有助于解释外场观测到的气溶胶相中二烷基胺盐较多的事实. 利用测得的速率常数和大气中臭氧浓度, 还估算了二乙胺和三乙胺与臭氧反应的大气寿命. 结果显示, 与臭氧的反应是二乙胺和三乙胺在大气中的一种重要的消除途径, 尤其是在污染严重地区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号