首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothermal phase diagrams of the system cetyltrimethylammonium bromide (CTAB)/n‐butanol/n‐octane/water were constructed, and the effect of the oil (n‐octane) contents on the microemulsions was studied at 40 °C. We determined the microemulsion structures of two systems, CTAB/n‐butanol/10% n‐octane/water and sodium dodecyl sulfonate (As)/n‐butanol/20% styrene/water, by conductivity measurements to investigate the polymerization of acrylamide and styrene in the two microemulsion systems. The polymerization kinetics of the water‐soluble monomer acrylamide in CTAB micelles and the different CTAB/n‐butanol/10% n‐octane/water microemulsion media [water‐in‐oil (W/O), bicontinuous (BC), and oil‐in‐water (O/W)] were studied with water‐soluble sodium bisulfite as the initiator. The maximum polymerization rate in CTAB micelles was found at the second critical micelle concentration. A mechanism of polyacrylamide formation and growth was proposed. A connection between the structures of the microemulsions and the polymerization rates was observed; the maximum polymerization rate occurred at two transition points, from W/O to BC and from BC to O/W, and the polyacrylamide molecular weights, which depended on the structures of the microemulsions, were also found. A square‐root dependence of the polymerization rates on the initiator concentrations was obtained in CTAB micelles and O/W microemulsion media. The polymerization of the oil‐soluble monomer styrene in different As/n‐butanol/20% styrene/water microemulsion media (W/O, BC, and O/W) was also investigated with different initiators: water‐soluble potassium persulfate and oil‐soluble azobisisobutyronitrile. A similar connection between the structures of the microemulsions and the conversions of styrene in CTAB/n‐butanol/10% n‐octane/water for the polymerization of acrylamide was observed again. The structures of the microemulsions had an important role in the molecular weights and sizes of polystyrene. The polystyrene particles were 10–20 nm in diameter in BC microemulsion media and 30–60 nm in diameter in O/W microemulsion media according to transmission electron microscopy. We determined the solubilization site of styrene in O/W microemulsion drops by 1H NMR spectra to analyze the results of the microemulsion polymerization of styrene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3320–3334, 2001  相似文献   

2.

Phase diagrams of the n‐butanol/n‐octane/water/(12‐3‐12,2Br?1) system were determined, where n‐octane usually represents oil (O), 12‐3‐12,2Br?1 is a gemini cationic surfactant trimethylene‐1,3‐bis(dodecyldimethyl ammonium bromide) abbreviated as S, and n‐butanol is a co‐surfactant written as A. Effects of the weight ratio of gemini surfactant to cosurfactant, S/A, and of temperature on the phase behavior were studied. The microemulsion structures including O/W, bi‐continuous (B.C.), W/O, and liquid crystal were determined by the conductivity method and polarization measurement. Experimental results show that the gemini surfactant, used facilitates the formation of microemulsions compared with its corresponding monomeric surfactant, n‐dodecyl trimethylammonium bromide (DTAB). When S/A=1/1, and the total concentration of gemini surfactant and alcohol is 20–40%, microemulsions with higher water content can form in a wider region. When the temperature increases, the size and position of each type of microemulsion region changes notably.  相似文献   

3.
Kinetic studies have been performed to understand the hydrolytic potencies of oximate (2- and 4-pyridinealdoxime) and its functionalized oximate (4-(hydroxyiminomethyl)-1-alkylpyridinium bromide) ions (alkyl?=?C10H21 (4-C10PyOx-); alkyl?=?C12H25 (4-C12PyOx-)) in the cleavage of phosphate esters, diethyl p-nitrophenylphosphate (Paraoxon) and p-nitrophenyl diphenyl phosphate (PNPDPP) in a cationic (O/W) microemulsion system (ME) over a pH range 7.5 to 11.0 at 300?K. The kobs values for the reaction of paraoxon with oximate and its functionalized oximate were determined in different microemulsion composition and the kinetic rate data shows that kobs values increases with increasing water content. The specificity of different chain length of alcohols (n-butanol, n-pentanol, n-hexanol and n-octanol) was also investigated in hydrolytic reactions of paraoxon for different microemulsion composition.  相似文献   

4.
钱俊红  郭荣 《中国化学》2003,21(10):1284-1289
The hydrolysis of cephanone in SDS micelle and SDS/n-C5H11-OH/H2O O/W microemulsion was studied through Uv-vis ab-sorption spectroscopy. The change of pH value in the hydrolysis of cephanone was determined. The result shows that pH value decreases in the process of the hydrolysis, and that the SDS ml-celle and SDS/n-C5H11OH/H2O O/W microemulsion accelerate the hydrolysis of cephanone compared with water.  相似文献   

5.
Abstract

Phase diagrams of sodium dodecyl sulfonate (DS)/n‐butanol/styrene/water systems with variable amounts of styrene were constructed at 40°C, and the effects of styrene on microemulsion stability were studied. The solubilization of styrene in these O/W microemulsion systems was investigated by 1H NMR methods. The results show that the solubilization site shifts from the palisade layer to the inner core of microemulsion droplets when the molar fraction of styrene reaches 0.312. The solubilization of acrylamide in cetyltrimethylmethyl ammonium bromide (CTAB)/n‐butanol/10% n‐octane/water reverse microemulsions (W/O) was studied with a 13C NMR method. It was found that the acrylamide was mainly solubilized in the Stern layer of droplets at low acrylamide levels. However, when the mole fraction of acrylamide approaches 0.428, the acrylamide penetrates into the palisade layer and is distributed along the hydrocarbon chain of the surfactant.  相似文献   

6.
The pseudotertiary phase diagram of the microemulsion system alkyl polyglucoside/n-butanol/n-hexane/water was plotted at (30.0±0.1) ℃. The dielectric measurements, including permittivity, conductivity, relaxation strength, characteristic relaxation time, etc,, were applied to investigate the microstructure of the system. Unique dielectric relaxations were observed over the frequency range of 5-10^7 Hz, taking place possibly through an interracial polarization mechanism. According to the results obtained from dielectric spectroscopy, the structures of the microemulsion O/W, BC and W/O were determined, and some dielectric and phase parameters were calculated.  相似文献   

7.
Abstract

The hydrolysis of cephanone in water, cetyl trimethyl ammonium bromide (CTAB) micelle, and CTAB/n‐C5H11OH/H2O O/W microemulsion was studied through UV‐VIS absorption spectroscopy. The mechanism of the hydrolysis and the effects of both the acidity of the media and the composition of O/W microemulsion on the hydrolysis were studied. The results show that the hydrolysis rate of cephanone increases with the acidity. Compared with water, CTAB micelle and CTAB/n‐C5H11OH/H2O O/W microemulsion suppress this hydrolysis. The inhibition of the hydrolysis of cephanone by CTAB micelle and CTAB/n‐C5H11OH/H2O O/W microemulsion is related to the location of cephanone in the interphases of CTAB micelles and CTAB/n‐C5H11OH/H2O O/W microemulsion droplets.  相似文献   

8.
The three-phases behavior in the quaternary stsem of n-dodecyl polyglucoside C12G1.46/1-butanol/cyclohexane/water has been studied at 40℃ in terms of the variables γ and δ.Increasing δ at constant γcauses a phase inversion from an oil-in-water microemulsion in contact with excess oil(winsor I or 2) to a water-in-oil microemulsion in contact with excess water (winsor Ⅱor 2)via a middle-phase microemulsion in contact with excess oil and water(winsor Ⅲor 3).By taking into account the different solubilities of alkyl polyglucoside and 1-butanol in the oil phase,the composition of the hydrophile-lipophile balanced interfacial film in the middle of the three-phase body can be calculated.The effects of different oils and aqueous media on the phase behavior and on the composition of the interfacial film and the efficiency for alkyl polyglucoside to make equal weights of water and oil to a single phase were investigated.It was found that the oil molecules with small molecular volumes can improve the solubilizing efficiency of the surfactant to form single-phase microemulsion.In inorganic salt(NaCl) and acid(HCl) solutions,less 1-butanol is needed than that in alkali(NaOH) solution to form middle-phase microemulsion.  相似文献   

9.
Here, we present the oil/water (O/W) microemulsion polymerization in three‐component microemulsions of n‐butyl acrylate, ethyl acrylate, and methyl acrylate, monomers with similar chemical structures but different water solubilities using the cationic surfactant dodecyl trimethyl ammonium bromide. The effects of monomer water solubility, initiator type and initial monomer concentration on the polymerization kinetics were studied. Reaction rates were high with final conversions between 70 and 98% depending on the monomer and reaction conditions. The final latexes were bluish, with a particle size ranging between 20 and 50 nm and polymer with molar masses in the order of 106 g mol?1. Increasing monomer water solubility resulted in a slower reaction rate, larger particles and a lower number density of particles. A higher reaction rate, larger average particle size and higher particle number density were obtained by increasing the monomer concentration. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Rate constants for the hydrolysis reaction of phosphate (paraoxon) and thiophosphate (parathion, fenitrothion) esters by oximate (pyridinealdoxime 2‐PyOx and 4‐PyOx) and its functionalized pyridinium surfactants 4‐(hydroxyimino) methyl)‐1‐alkylpyridinium bromide ions (alkyl = CnH2n+1, n = 10, 12, 14, 16) have been measured kinetically at pH 9.5 and 27°C in micellar media of cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPB). Acid dissociation constant, pKa, of oximes has also been determined by spectrophotometric, kinetic, and potentiometric methods. The rate acceleration effects of cationic micelles have been explored. Cationic micelles of the pyridinium head group (CPB) showed a large catalytic effect than the ammonium head group (CTAB). The effects of pH, oximate concentration, and surfactants have been discussed.  相似文献   

11.

Pseudo‐first‐order rate constants have been determined for the nucleophilic substitution reactions of p‐nitrophenyl acetate with oxalo, malono, and succinodihydroxamate ions (?ONHC(O)(CH2)nC(O)NHO?) in phosphate buffer (pH=7.9) at 27°C. The rate data of the reaction revealed that the nucleophilic reactivity sequence of these hydroxamate ions is generally ODHA>MDHA>SDHA. The kobs value increases upon addition of cationic surfactants to the reaction medium which is typical behavior of micelle‐assisted bimolecular reactions. The pseudo‐phase ion exchange model has been successfully applied to determine binding constant.  相似文献   

12.
Effect of the structures of microemulsions on chemical reactions   总被引:2,自引:0,他引:2  
Two kinds of chemical reactions were studied in two different microemulsion systems: cetyltrimethylammonium bromide/1-butanol/10 and 25% n-octane/water and sodium dodecyl sulfonate/1-butanol/20% styrene/water. One reaction is a hydrolysis reaction, in which aspirin and 2,4-dinitrochlorobenzene were used as the hydrolysis substrates. The second reaction is the polymerization of styrene, which was initiated by using two initiators, water-soluble K2S2O8 and oil-soluble 2,2′-azobis(isobutyronitrile), and, at the same time, the polymerization of acrylamide, which was initiated by NaHSO3, was also studied. All the hydrolysis reaction experimental results show that the hydrolysis is greatly affected by the structures and the structural transitions of microemulsions. The hydrolysis rates are higher in water-in-oil (W/O) microemulsion media and decrease with the addition of water. The rates increase in bicontinuous (BC) microemulsions and decrease in oil-in-water (O/W) microemulsions. The transition points of the hydrolysis rates occurred at the two microemulsion structural transition points from W/O to BC and from BC to O/W. The polymerization relationships between the conversions of styrene, the molecular weights of polystyrene and the water contents of the microemulsion system were obtained. The effects of microemulsion structures on the sizes of the polystyrene particles and on the molecular weights of the polymers are discussed. Polystyrene particles with diameters of 10–60 nm were observed by microscopy. Our experimental polymerization results show that microemulsions are suitable as media for the production of polymers, the molecular weights and the particle sizes of which can be controlled and predicted by variations in microemulsion structures. Received: 11 July 1999/Accepted: 26 July 1999  相似文献   

13.
The effects of penicillin potassium salt (PenK) on the solubility, Krafft temperature TK, critical micelle concentration CMC of SDS micelle and the phase behavior of SDS/n-C5H11OH/H2O system were studied. The partial phase diagrams of SDS/PenK/H2O system at different temperatures were determined. The release amounts of PenK in SDS/n-C5H11OH/H2O system and the distribution coefficient of PenK between micelle and water were measured by UV-Vis spectroscopy. The results show that in the presence of PenK, the CMC of SDS was decreased while the TK of SDS was increased and the solubility of SDS in both water and SDS/n-C5H11OH/H2O oil in water (O/W) microemulsion was decreased, but increased in water in oil (W/O) microemulsion. SDS micelles and SDS/n- C5H11OH/H20 O/W microemulsion could accelerate the release rate of PenK. The addition of SDS and water could both increase the release rate of PenK, whereas the presence of n-C5H11OH reduced the release rate of PenK. The above results were related to the electrostatic repulsion between PenK and SDS.  相似文献   

14.
郭荣  魏逊  刘天晴 《中国化学》2005,23(4):393-399
In the system of SDS/n-C5H11OH/n-C7H16/H2O with the weight ratio of SDS/n-C5H11OH/H2O system at5.0/47.5/47.5, the upper phase of the system was W/O microemulsion, and the lower phase was the bicontinuous microemulsion. When the n-heptane content was less than 1%, with the increase of the n-heptane content, the capacitance (Co, Cod) in the upper phase (W/O) dropped, the capacitance (CB1, CBld) in the lower phase (BI) raised. At the same time, the W/O-BI inteffacial potential (ΔE), capacitance (Ci), and charge-transfer current (ict) decreased.After the n-heptane content reached 1%, with the increase of the n-heptane content, ΔE, Ci and ict demonstrated no significant change.  相似文献   

15.
A bimolecular rate constant, kOH + dihydromyrcenol, of (38 ± 9) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with 2,6‐dimethyl‐7‐octen‐2‐ol (dihydromyrcenol,) at 297 ± 3 K and 1 atm total pressure. Additionally, an upper limit of the bimolecular rate constant, k, of approximately 2 × 10?18 cm3 molecule?1 s?1 was determined by monitoring the decrease in ozone (O3) concentration in an excess of dihydromyrcenol. To more clearly define part of dihydromyrcenol's indoor environment degradation mechanism, the products of the dihydromyrcenol + OH and dihydromyrcenol + O3 reactions were also investigated. The positively identified dihydromyrcenol/OH and dihydromyrcenol/O3 reaction products were acetone, 2‐methylpropanal (O?CHCH(CH3)2), 2‐methylbutanal (O?CHCH(CH3)CH2CH3), ethanedial (glyoxal, HC(?O)C(?O)H), 2‐oxopropanal (methylglyoxal, CH3C(?O)C(?O)H). The use of derivatizing agents O‐(2,3,4,5,6‐pentafluorobenzyl)hydroxylamine (PFBHA) and N,O‐bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible dihydromyrcenol/OH and dihydromyrcenol/O3 reaction mechanisms based on previously published volatile organic compound/OH and volatile organic compound/O3 gas‐phase reaction mechanisms. © 2006 Wiley Periodicals, Inc. *
  • 1 This article is a US Government work and, as such, is in the public domain of the United States of America
  • Int J Chem Kinet 38: 451–463, 2006  相似文献   

    16.
    Urea can enhance the aqueous solubility of surfactant CTAB (hexadecyltrimethylammonium bromide) when it shows the hydrotrope action. It will show the hydrotrope‐solubilization action when the solubilized amount of n‐C5H11OH in O/W microemulsion and that of water in W/O microemulsion are increased. The mechanism of the hydrotrope‐solubilization action of urea is the increase of the stability of W/O and O/W microemulsion and structural transition from the lamellar liquid crystalline phase to the bicontinuous structure.  相似文献   

    17.
    Cephanone is found to show the hydrotrope and hydrotrope-solubilization action in CTAB/n-C5H11OH/H2O system. Cephanone can increase the solubilities of cationic surfactant CTAB or n-C5H11OH in water and water in n-C5H11OH. It can also increase the solubilization amount of n-C5H11OH in O/W microemulsion and that of water in W/O microemulsion, which makes the two regions of O/W and W/O microemulsion larger, and even linked together. The mechanism of the hydrotrope-solubilization action of cephanone is related to the location of cephanone in the palisade of microemulsion which causes the stability of O/W and W/O microemulsion to be enhanced and that of lamellar liquid crystal to be reduced. Therefore, the mechanism of hydrotrope-solubilization is the structural transition from lamellar liquid crystal to the bicontinuous structure.  相似文献   

    18.
    Abstract

    Diffusion coefficients of different aggregates in aqueous solutions formed by an amphiphilic block copolymer, Pluronic F127 (F127), were determined by cyclic voltammetry, and the critical micelle concentration (CMC, 4.31 × 10?4 mol L?1) of F127 was obtained. The added n‐butanol facilitates the formation of micelles from the monomers of F127 and makes the critical micelle temperature (CMT) of F127 solutions decrease. The diffusion coefficient of the F127 micelles decreases relatively fast at first with increasing n‐butanol and then the decreasing trend slows after the solubilization of n‐butanol in micelles reaches maximum.  相似文献   

    19.
    Pseudo‐first‐order rate constants have been determined for the nucleophilic substitution reactions of p‐nitrophenyl acetate with p‐chlorophenoxide (4‐ClC6H4O?) and N‐phenylbenzohydroxamate (C6H5CON(C6H5)O?) ions in phosphate buffer (pH 7.7) at 27°C. The effect of cationic, (CTAB, TTAB, DTAB), anionic (SDS), and nonionic (Brij‐35) surfactants has been studied. The kobs value increases upon addition of CTAB and TTAB. The effect of DTAB and other surfactants on the reaction is not very significant. The micellar catalysis and α‐effect shown by hydroxamate ion have been explained. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 26–31, 2006  相似文献   

    20.
    Safranine‐O, a dye of the phenazinium class, was found to exhibit intricate kinetics during its reaction with bromate at low pH conditions. Under conditions of excess concentrations of acid and bromate, safranine‐O (SA+) initially depleted very slowly (k = (3.9 ± 0.3) × 10?4 M?3 s?1) but after an induction time, the reaction occurred swiftly. Bromide exhibited a dual role in the reaction mechanism, both as an autocatalyst and as an inhibitor. The added bromide increased the initial rate of depletion of SA+, but delayed the transition to rapid reaction. The overall stiochiometric reaction was found to be 6SA+ + 4 BrO3 ? = 6SP + 3N2O + 3H2O + 6H+ + 4Br?, where SP is 3‐amino‐7‐oxo‐2,8‐dimethyl‐5‐phenylphenazine. The fast kinetics of the reaction between aqueous bromine and safranine‐O (k = (2.2 ± 0.1) × 103 M?1 s?1) are also reported in this paper A 17‐step mechanism, consistent with the overall reaction dynamics and supported by simulations, is proposed and the role of various bromo and oxybromo species is also discussed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 542–549, 2002  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号