首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

2.
A series of new chiral (S)‐3‐ary1‐6‐pyrrolidin‐2‐yl‐[1,2,4]triazolo[3,4‐b]thiadiazole (II1‐5), (S)‐1‐(3‐aryl‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐ethylamine (II6‐8) and (S)‐1,2‐bis(3‐aryl‐[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐ethylamine (II9‐11) were prepared by the condensation of 3‐aryl‐4‐amino‐5‐mercapto‐1,2,4‐triazoles with different L‐amino acids in the presence of phosphorus oxychloride and evaluated for their antibacterial activity.  相似文献   

3.
New derivatives of 2,5‐dimercapto‐1,3,4‐thiadiazole substituted both at one or two exocyclic sulfur atoms with a series of aroyl or ethoxycarbonyl groups were synthesized in reactions of 2,5‐dimercapto‐1,3,4‐thiadiazole salts with appropriate acid chlorides or ethyl chloroformate in mild conditions. The products were characterized by spectroscopy (1H NMR, 13C NMR, IR, and HRMS). Some from the synthesized compounds were screened in vitro and in vivo for antibacterial and antifungal activities against a panel of reference strains of microorganisms. The study revealed that ethyl S‐(5‐mercapto‐1,3,4‐thiadiazol‐2‐yl) carbonothioate seems to be the most active and versatile compound against Gram‐positive bacteria, Gram‐negative bacteria, and plant pathogenic fungi.  相似文献   

4.
A simple and efficient method was developed for the synthesis of 1‐(substituted)‐3‐(5‐(substituted)‐1,3,4‐thiadiazol‐2‐yl) ureas from heterocyclic amino compounds and phenyl‐5‐(pyridine‐3‐yl)‐1,3,4‐thiadiazol‐2‐ylcarbamate( 2 ) or phenyl‐5‐(trifluoro‐methyl)‐1,3,4‐thiadiazol‐2‐ylcarbamate( 5 ) under solvent conditions using microwave irradiation. The products were obtained in satisfactory yield as we expected. The reactions can be realized by conventional heating, but we find that the condition of microwave is better according to the reaction time. New 1‐(substituted)‐3‐(5‐(substituted)‐1,3,4‐thiadiazol‐2‐yl) urea derivatives are reported. The products were characterized by 1H NMR, ESI‐MS, and Elemental analysis. The crystal structure of compound 6h was determined by X‐ray single crystal diffraction. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:621–629, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20489  相似文献   

5.
Available 2‐acylamino‐3,3‐dichloroacrylonitriles, when treated with hydrazine hydrate, provide 2‐alkyl‐ or 2‐aryl‐5‐hydrazino‐1,3‐oxazole‐4‐carbonitriles that readily add alkyl or aryl isothiocyanates and the adducts formed recyclize on heating. Finally, the synthesis results in 5‐alkyl(aryl)amino‐1,3,4‐thiadiazol‐2‐yl(acylamino)acetonitriles or the products of their further cyclization, 2‐(5‐amino‐1,3‐ oxazol‐2‐yl)‐1,3,4‐thiadiazole derivatives. The structures of the novel substituted 1,3,4‐thiadiazoles are corroborated spectroscopically as well as by X‐ray diffraction method. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:454–458, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20041  相似文献   

6.
A series of novel 6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐7‐phenylpyrazolo[1,5‐a]pyrimidines, 5‐phenyl‐6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]imidazo[1,2‐a]pyrimidines, and 2‐phenyl‐3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]pyrimido[1,2‐a]benzimidazoles have been synthesized in four steps starting with 2‐hydroxyacetophenone. The intermediate 3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐4H‐1‐benzopyran‐4‐ones reacted with pyrazol‐3‐amines, 5‐methylpyrazol‐3‐amine, and 1H‐imidazol‐2‐amine, 1H‐benzimidazol‐2‐amine via a cyclocondensation to give the title compounds in the presence of MeONa as base, respectively. The approach affords the target compounds in acceptable‐to‐good yields. The new compounds were characterized by their IR, NMR, and HR mass spectra.  相似文献   

7.
以2-巯基-5-(3,4,5-三甲氧基苯基)-1,3,4-噻二唑为原料,经醚化、酰肼化、闭环、硫醚化四步反应合成了10个2-(3,4,5-三甲氧基苯基)-5-[(5-烷硫基-1,3,4-噁二唑-2-基)硫甲基]- 1,3,4-噻二唑类衍生物。通过元素分析、IR、MS、1H NMR和 13C NMR对目标化合物进行了表征。采用In(OTf)3催化下40 oC水相合成目标化合物,具有反应条件温和、合成收率高、催化剂可循环使用等特点。  相似文献   

8.
The gas phase elimination kinetics of the title compound was studied over the temperature range of 260.1–315.0°C and pressure range of 20–70 Torr. This elimination, in seasoned static reaction system and in the presence of at least fourfold of the free radical inhibitor toluene, is homogeneous, unimolecular and follows a first‐order rate law. The reaction yielded mainly benzaldehyde, CO, and HBr, and small amounts of benzylbromide and CO2. The observed rate coefficients are expressed by the following Arrhenius equations: For benzaldehyde formation: log k1 (s−1) = (12.23 ± 0.26) − (164.9 ± 2.7) kJ mol−1 (2.303 RT)−1 For benzylbromide formation: log k1 (s−1) = (13.82 ± 0.50) − (192.8 ± 5.5) kJ mol−1 (2.303 RT)−1 The mechanisms are believed to proceed through a semi‐polar five‐membered cyclic transition state for the benzaldehyde formation, while a four‐centered cyclic transition state for benzylbromide formation. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 725–728, 1999  相似文献   

9.
As an important class of heterocyclic compounds, 1,3,4‐thiadiazoles have a broad range of potential applications in medicine, agriculture and materials chemistry, and were found to be excellent precursors for the crystal engineering of organometallic materials. The coordinating behaviour of allyl derivatives of 1,3,4‐thiadiazoles with respect to transition metal ions has been little studied. Five new crystalline copper(I) π‐complexes have been obtained by means of an alternating current electrochemical technique and have been characterized by single‐crystal X‐ray diffraction and IR spectroscopy. The compounds are bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[nitratocopper(I)], [Cu2(NO3)2(C6H9N3S)2], (1), bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[(tetrafluoroborato)copper(I)], [Cu2(BF4)2(C6H9N3S)2], (2), μ‐aqua‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}bis[nitratocopper(I)], [Cu2(NO3)2(C5H7N3S2)2(H2O)], (3), μ‐aqua‐(hexafluorosilicato)bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I)–acetonitrile–water (2/1/4), [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5CH3CN·2H2O, (4), and μ‐benzenesulfonato‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I) benzenesulfonate–methanol–water (1/1/1), [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH3OH·H2O, (5). The structure of the ligand 5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine (Mepeta ), C6H9N3S, was also structurally characterized. Both Mepeta and 5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine (Pesta ) (denoted L ) reveal a strong tendency to form dimeric {Cu2L 2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thiadiazole N atoms and an allylic C=C bond. Flexibility of the {Cu2(Pesta )2}2+ unit allows the CuI atom site to be split into two positions with different metal‐coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. The Pesta ligand in (4) allows the CuI atom to vary between water O‐atom and hexafluorosilicate F‐atom coordination, resulting in the rare case of a direct CuI…FSiF52− interaction. Extensive three‐dimensional hydrogen‐bonding patterns are formed in the reported crystal structures. Complex (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound. To determine the hydrogen‐bond interactions in the structures of (1) and (2), a Hirshfeld surface analysis has been performed.  相似文献   

10.
Some inimitable and therapeutic coumarin‐substituted fused[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadizole derivatives were synthesized by the cyclocondensation reaction of 2‐oxo‐2H‐chromene‐3‐carboxylic acid ( 1 ) and 4‐amino‐5‐hydrazinyl‐4H‐[1,2,4]‐triazole‐3‐thiol ( 2 ) by using phosphorous oxychloride as a cyclizing agent. This cyclized intermediate 3‐(3‐hydrazino‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐chromen‐2‐one ( 3 ) later condensation with various ethyl 2‐(2‐arylhydrazono)‐3‐oxobutanoates ( 4 ) in NaOAc/MeOH under reflux conditions afforded the corresponding new series of aryl‐substituted hydrazono‐pyrazolyl‐[1,2,4]triazolo[3,4‐b][1,3,4][thiadiazol]‐coumarin derivatives ( 5 ) in good to excellent yields. The structures of newly synthesized compounds were established on the basis of elemental analysis, IR, 1H NMR and mass spectroscopic studies.  相似文献   

11.
A new series of 1‐(5‐(benzylsulfinyl)‐3‐methyl‐1,3,4‐thiadiazol‐2(3H)‐ylidene)‐thiourea/urea derivatives ( 1a – j ) were designed and synthesized. For the first time, (i) a new process was developed for N‐methylation of 1,3,4‐thiadiazole moiety using dimethyl carbonate an environmentally benign reagent in presence of N,N,N′,N‐tetramethylethylenediamine and (ii) the sulfide was selectively oxidized to sulfoxide in higher yield by using chlorine (g) in aqueous acetic acid media under mild reaction condition. The synthesized compounds ( 1a – j ) were investigated for their antimicrobial activities. The tested compounds ( 1a – j ) were exhibited moderate to excellent antibacterial activities against both Gram‐positive and Gram‐negative bacterial strains. The same compounds exhibited good antifungal activities against selected fungal strains. Particularly, the compounds 1b , 1d , 1h , and 1i were proved to be promising leads exhibiting both antibacterial and antifungal activities compared with standard drugs, ciprofloxacin, and fluconazole. The presence of 1,3,4‐thiadiazole moiety has a significant role in the display of antimicrobial activity. In addition, the presence of both sulfinyl and thiourea or urea functionalities has enhanced the activity as per obtained antimicrobial activity data.  相似文献   

12.
The synthesis of 1,3,4‐thiadiazole skeleton compounds exhibiting high fungicidal activities has been demonstrated. Thirteen novel 1,3,4‐thiadiazolyl‐pyrazolines compounds containing ferrocene were designed and synthesized from the ferrocenylchalcones intermediates 3a – 3m and the 2‐hydrazino‐5‐phenyl‐1,3,4‐thiadiazole intermediate 8 . All compounds were characterized by 1H NMR, 13C NMR, FT‐IR spectra, and HR‐MS, and the structure of one of the new compounds N‐(4‐phenyl‐1,3,4‐thiadiazol‐2‐yl)‐3‐ferrocenyl‐5‐phenyl‐pyrazoline 9a was further determined by X‐ray diffraction analysis. The preliminary results of a biological activity assay indicated that all the title compounds exhibited significant fungicidal activities against Pythium solani, Gibberella saubinetii, and Gibberella nicotiancola. Furthermore, compounds 9e and 9h displayed even higher fungicidal activities against the three fungal species compared with the control drug pyraclostrobin.  相似文献   

13.
An efficient two‐step synthesis of novel 3‐(5‐amino‐[1,3,4]thiadiazol‐2‐yl)‐2H‐pyrano[2,3‐c]pyridine‐2‐ones was developed. In the first step, a new 2H‐pyrano[2,3‐c]pyridine‐3‐carboxamide 5 was prepared by Knoevenagel condensation of pyridoxal hydrochloride with cyanoacetamide. In the second step, the reaction of carboxamide 5 with a series of N4‐substituted thiosemicarbazides yielded a library of 35 dis crete compounds 8 {1–35} in high yields. The intermolecular recyclization mechanism leading to these products is discussed.  相似文献   

14.
A new N,N‐disubstituted (4‐aminophenyl)diazenyl‐1,3,4‐thiadiazole, an azo dye, was synthesized from the reaction of the 1‐decanoyl‐4‐phenylpiperazine in acetone, in situ, with the diazonium salt prepared from 1,3,4‐thiadiazol‐2‐amine and NaNO2 in H3PO4. The azo dye was found to form complexes with a series of m‐alkoxybenzoic acid by intermolecular H‐bonding. The mesogenic behavior of the complexes were investigated by polarizing optical microscopy and differential scanning calorimetry. A study of the representing complex by powder X‐ray diffraction and molecular modeling was further undertaken to locate the H‐bonding position.  相似文献   

15.
The gas‐phase kinetics and mechanism of the homogeneous elimination of CO from butyraldehyde in the presence of HCl has been experimentally studied. The reaction is homogeneous and follows the second‐order kinetics with the following rate expression: log k 1 (s−1 L mol−1) = (13.27 ± 0.36) – (173.2 ± 4.4) kJ mol−1(2.303RT )−1. Experimental data suggested a concerted four‐membered cyclic transition state type of mechanism. The first and rate‐determining step occurs through a four‐membered cyclic transition state to produce propane and formyl chloride. The formyl chloride intermediate rapidly decomposes to CO and HCl gases.  相似文献   

16.
A series of O,O‐diphenyl 1‐(5‐alkyl‐1,3,4‐thiadiazol‐2‐yl)aminoarylmethylphosphonates was synthesized by the three‐component condensation reactions of 2‐amino‐5‐alkyl‐1,3,4‐thiadiazoles with triphenyl phosphite and aromatic aldehydes in acetic acid. The reaction conditions were discussed. The structures of products were confirmed by 1H‐NMR, IR, MS, and elemental analyses. The results of preliminary bioassay showed that the new compounds possess fungicidal activity. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:317–322, 2000  相似文献   

17.
The title compound, C14H16N4O8S4, has crystallographic C2 symmetry with half a molecule in the asymmetric unit and a dihedral angle of 58.7 (1)° between the two planar 1,3,4‐thiadiazole five‐membered rings of the macrocyclic, giving the molecule a twisted conformation.  相似文献   

18.
An experimental study of the thermal decomposition of a β‐hydroxy alkene, 3‐methyl‐3‐buten‐1‐ol, in m‐xylene solution, has been carried out at five different temperatures in the range of 513.15–563.15 K. The temperature dependence of the rate constants for the decomposition of this compound in the corresponding Arrhenius equation is given by ln k (s?1) = (25.65 ± 1.52) ? (17,944 ± 814) (kJ·mol?1T?1. A computational study has been carried out at the M05–2X/6–31+G(d,p) level of theory to calculate the rate constants and the activation parameters by the classical transition state theory. There is a good agreement between the experimental and calculated rate constants and activation Gibbs energies. The bonding characteristics of reactant, transition state, and products have been investigated by the natural bond orbital analysis, which provides the natural atomic charges and the Wiberg bond indices. Based on the results obtained, the mechanism proposed is a one‐step process proceeding through a six‐membered cyclic transition state, being a concerted and slightly asynchronous process. The results have been compared with those obtained previously by us (Struct Chem 2013, 24, 1811–1816) for the thermal decomposition of 3‐buten‐1‐ol, in m‐xylene solution. We can conclude that in the compound studied in this work, 3‐methyl‐3‐buten‐1‐ol, the effect of substitution at position 3 by a weakly activating CH3 group is the stabilization of the transition state formed in the reaction and therefore a small increase in the rate of thermal decomposition.  相似文献   

19.
5‐Substituted (amine, alkyl, aryl, heterocyclic) 4‐(1,3,4‐thiadiazol‐2‐yl)benzene‐1,3‐ diols were synthesized, and their antifungal properties were examined. The compounds were obtained by the one‐pot reaction of sulfinylbis((2,4‐dihydroxyphenyl)methanethione) with hydrazides or thiosemicarbazides. Their structures were identified from elemental, IR, 1H NMR, and MS spectra analyses. The activities of the derivatives against five phytopathogenic fungi in vitro were measured. Moderate fungicidal effect of the compounds under consideration was found. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:533–540, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20645  相似文献   

20.
Starting from 5‐hydroxymethyl‐2‐mercapto‐1‐methyl‐1H‐imidazole (1), a series of 2‐(1‐methyl‐2‐methylsulfonyl‐1H‐imidazol‐5‐yl)‐5‐alkylthio and 5‐alkylsulfonyl‐1,3,4‐thiadiazole derivatives ( 9a , 9b , 9c , 9d and 10a , 10b , 10c , 10d ) were prepared as potential antimicrobial agents. The structure of the obtained compounds was confirmed by NMR, IR, Mass spectroscopy, and elemental analysis. J. Heterocyclic Chem., (2010)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号