首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Methylated quartz surfaces are extensively used in colloid science for wettability studies and the control and impact of hydrophobicity in key physicochemical processes. In this study, time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to correlate the surface chemistry of trimethylchlorosilane-methylated quartz surfaces with the contact angle. Models have been developed for the calculation of both advancing and receding contact angles based on measurements of the ToF-SIMS signals for SiC(3)H(9)(+) (TMCS) and Si(+) (quartz). These models enable the contact angle across surfaces and, more importantly, that of individual particles to be determined on a micrometer scale. Distributions of contact angles in large ensembles of particles, therefore, can now be determined. In addition, from the ToF-SIMS analysis, the surface coverage of the methylated species can be quantitatively determined, in line with the Cassie equation. Moreover, advancing and receding contact angle maps can be calculated from ToF-SIMS images, and hence the variation in microscopic hydrophobicity (e.g., at the particle level) can be extracted directly from the images.  相似文献   

2.
The wetting by water of the adsorbed layer of β-casein on hydrophobised silica and pure (hydrophilic) silica surface was investigated by dynamic contact angle measurements based on the Wilhelmy plate principle. The results are discussed in relation to adsorption data obtained for the protein on similar surfaces by in situ ellipsometry. β-casein adsorption on a hydrophobic surface leads to a significant decrease of the contact angle, in particular in terms of the receding contact angle, which decreased by about 70°. This indicates a strong shielding of the hydrophobic surface by the hydrophilic domain of β-casein. Adding a specific enzyme, endoproteinase Asp-N, which previously has been proposed to remove a large fraction of the hydrophilic segments, results in a significantly decreased wettability of the solid surface. The layer is now more hydrophobic and the hysterises is much smaller. The receding contact angle after the proteolysis is roughly 70°. The results are consistent with the hypothesis that β-casein adsorbs at the hydrophobic surface to form a monolayer with the hydrophobic part of the protein anchored at the surface, leaving the hydrophilic segments dangling into the solution. Less dramatic effects are observed in terms of changes of the wettability on the hydrophilic surface. The surface is still quite hydrophilic both after adsorbing β-casein and exposing the layer to endoproteinase Asp-N. These results confirm the differences in the structure of β-casein layers on the hydrophobic and hydrophilic surface.  相似文献   

3.
Various aspects of native and model biological membrane wettability are discussed. Among others hydration of mono-, bi-, and multi-layers of lipids as well as wettability of macroscopic surfaces of solid supported lipid films was investigated via apparent contact angle measurements and calculation of the apparent surface free energy of the films. The effects of relative humidity on the layer hydration and contact angle changes are also discussed. Finally, the effect of liposomes and enzymes (due to the hydrolysis reactions) on the hydrophobic/hydrophilic character of the film surfaces is overviewed.  相似文献   

4.
Flexible honeycomb gold films supported by polymer sheets are fabricated by using polystyrene particle monolayers. The surfaces of the flexible gold films are covered with self-assembled monolayers (SAMs) of hydrophobic or hydrophilic thiol compounds, and the wettability of the modified surface is evaluated by measurements of the contact angles of water droplets. The contact angle of the film covered with hydrophobic SAM is ca. 150 degrees, which is greater than the value of 112 degrees for a flat gold surface, while the values for hydrophilic SAM are below 10 degrees.  相似文献   

5.
This is the first report describing a new technology where hydrophobic nanoparticles adsorb onto much larger, hydrophilic mineral particle surfaces to facilitate attachment to air bubbles in flotation. The adsorption of 46 nm cationic polystyrene nanoparticles onto 43 μm diameter glass beads, a mineral model, facilitates virtually complete removal of the beads by flotation. As little as 5% coverage of the bead surfaces with nanoparticles promotes high flotation efficiencies. The maximum force required to pull a glass bead from an air bubble interface into the aqueous phase was measured by micromechanics. The pull-off force was 1.9 μN for glass beads coated with nanoparticles, compared to 0.0086 μN for clean beads. The pull-off forces were modeled using Scheludko's classical expression. We propose that the bubble/bead contact area may not be dry (completely dewetted). Instead, for hydrophobic nanoparticles sitting on a hydrophilic surface, it is possible that only the nanoparticles penetrate the air/water interface to form a three-phase contact line. We present a new model for pull-off forces for such a wet contact patch between the bead and the air bubble. Contact angle measurements of both nanoparticle coated glass and smooth films from dissolved nanoparticles were performed to support the modeling.  相似文献   

6.
Surfaces of low density polyethylene, high density polyethylene, and polystyrene have been modified by grafting with acrylic acid. Benzophenone and acrylic acid in the vapor phase were UV-irradiated in the presence of a polymer substrate. Grafting with acrylic acid took place in a thin layer on the surface, thus increasing the wettability of the polymer. After 5 min of irradiation, the contact angle against water had decreased to 20° for polystyrene and 50° for the polyethylene samples. ESCA measurements on samples irradiated for 5 min showed a 90% poly(acrylic acid) coverage of the surface for polystyrene, 63% for low density polyethylene, and 56% for high density polyethylene. Acetone or ethanol were used as carriers of monomer and initiator. Acetone was able to initiate grafting and was found to promote and direct grafting to the surface. The stability of the acrylic acid grafted surfaces was studied by contact angle measurements and ESCA. At room temperature, the grafted layer is confined to the surface, but when the material was heated in air the surface was reshaped into a hydrophobic one. The process was reversible. In aqueous surroundings at elevated temperatures the hydrophilic character of the surface was restored.  相似文献   

7.
用自组装技术在金(纯金和经阳极氧化的金)表面上获得了新型两亲聚合物PAMC_(16)S的有序膜。用接触角测试,XPS谱和电化学分析等方法对自组装膜进行了表征。根据膜表面的润湿性,金表面的自组装膜是疏水的,亲水的磺酸基团连于金表面,而疏水的碳氢链从表面伸展出。XPS实验结果支持金表面上单层膜的疏水结构。聚合物单层膜复盖的金电极起到含有针孔缺陷的阻膈型电极的作用。单层膜在法拉第反应中显示很强的吸附稳定性,说明聚合物LB膜在潜在应用中有其特有的特点。  相似文献   

8.
Polydimethylsiloxane (PDMS) is a widely used material for manufacturing lab-on-chip devices. However, the hydrophobic nature of PDMS is a disadvantage in microfluidic systems. To transform the hydrophobic PDMS surface to hydrophilic, it was treated with radio-frequency (RF) air plasma at 150, 300, and 500 mTorr pressures for up to 30 min. Following the surface treatment, the PDMS specimens were stored in air, deionized water, or 0.14 M NaCl solution at 4 degrees C, 20 degrees C, and 70 degrees C. The change in the hydrophilicity (wettability) of the PDMS surfaces was followed by contact angle measurements and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of time. As an effect of the RF plasma treatment, the contact angles measured on PDMS surfaces dropped from 113 +/- 4 degrees to 9 +/- 3 degrees . The chamber pressure and the treatment time had no or negligible effect on the results. However, the PDMS surface gradually lost its hydrophilic properties in time. The rate of this process is influenced by the difference in the dielectric constants of the PDMS and its ambient environment. It was the smallest at low temperatures in deionized water and largest at high temperatures in air. Apparently, the OH groups generated on the PDMS surface during the plasma treatment tended toward a more hydrophilic/less hydrophobic environment during the relaxation processes. The correlation between the FTIR-ATR spectral information and the contact angle data supports this interpretation.  相似文献   

9.
Surfaces play an important role in defining the properties of materials, controlling wetting, adsorption, or desorption of biomolecules, and sealing/bonding of different materials. We have combined microscale features with plasma-etched nanoscale roughness and chemical modification to tailor the wettability of the substrates. Cyclic olefin polymers and copolymers (COPs/COCs) were processed to make a range of surfaces with controlled superhydrophobic or -hydrophilic properties. The hydrophobic properties of the polymers were increased by the introduction of microstructures of varying geometry and spacing through hot embossing. The COC/COP substrates were functionalized by plasma activation in O(2), CF(4), and a mixture of both gases. The plasma etching introduces nanoscale roughness and also chemically modifies the surface, creating either highly hydrophilic or highly hydrophobic (contact angle >150°) surfaces depending on the gas mixture. The influence of geometry and chemistries was characterized by atomic force microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. Measurements of the contact angle and contact angle hysteresis demonstrated long-term stability of the superhydrophobic/superhydrophilic characteristics (>6 months).  相似文献   

10.
纳米结构表面浸润性质的分子动力学研究   总被引:2,自引:0,他引:2  
采用分子动力学方法研究了氩纳米液滴在铂金属及其模型固体表面的浸润现象,获得了液滴在平滑表面和三角纳米结构阵列表面的接触角和展布特性.研究表明,液滴与壁面的势能作用较强时,液滴与纳米结构表面为均匀浸润,但是由于迟滞效应,接触角受表面纳米结构的影响不明显;势能作用较弱时,纳米结构间隙中存在类似蒸汽的低密度相,液滴与纳米结构表面为非均匀浸润,接触角受纳米结构的影响而增大;表面纳米结构可以使表面具有超疏水性.  相似文献   

11.
The ability of polystyrene nanoparticles to facilitate the froth flotation of glass beads was correlated to the hydrophobicity of the nanoparticles. Contact angle measurements were used to probe the hydrophobicity of hydrophilic glass surfaces decorated with hydrophobic nanoparticles. Both sessile water drop advancing angles, θ(a), and attached air bubble receding angle measurements, θ(r), were performed. For glass surfaces saturated with adsorbed nanoparticles, flotation recovery, a measure of flotation efficiency, increased with increasing values of each type of contact angle. As expected, the advancing water contact angle on nanoparticle-decorated, dry glass surfaces increased with surface coverage, the area fraction of glass covered with nanoparticles. However, the nanoparticles were far more effective at raising the contact angle than the Cassie-Baxter prediction, suggesting that with higher nanoparticle coverages the water did not completely wet the glass surfaces between the nanoparticles. A series of polystyrene nanoparticles was prepared to cover a range of surface energies. Water contact angle measurements, θ(np), on smooth polymer films formed from organic solutions of dissolved nanoparticles were used to rank the nanoparticles in terms of hydrophobicity. Glass spheres were saturated with adsorbed nanoparticles and were isolated by flotation. The minimum nanoparticle water contact angle to give high flotation recovery was in the range of 51° < θ(np(min)) ≤ 85°.  相似文献   

12.
The chemical composition of the functional surfaces of substrates used for microarrays is one of the important parameters that determine the quality of a microarray experiment. In addition to the commonly used contact angle measurements to determine the wettability of functionalized supports, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are more specific methods to elucidate details about the chemical surface constitution. XPS yields information about the atomic composition of the surface, whereas from ToF-SIMS, information on the molecular species on the surface can be concluded. Applied on printed DNA microarrays, both techniques provide impressive chemical images down to the micrometer scale and can be utilized for label-free spot detection and characterization. Detailed information about the chemical constitution of single spots of microarrays can be obtained by high-resolution XPS imaging. Figure Eye-catching image for the graphical online abstract  相似文献   

13.
Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C(36)H(74) or n-alcohol C(35)H(71)OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding experimental data from x-ray reflectivity measurements, reveal a uniform weak de-wetting characteristic for the extended hydrophobic surface, while the hydrophilic surface is weakly wetted. These microscopic data are consistent with macroscopic contact angle measurements. Specific water orientation is present at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together with a partial drying of the surfaces are more indicative of the hydrophobic effect than structural ordering, which we suggest to be independent of surface topology.  相似文献   

14.
Upon reverse flotation of iron ore, the surface of the iron ore concentrate may become partially hydrophobized due to adsorption of flotation collector, which is facilitated by the calcium ions present in the process water. Hydrophobic areas on the concentrate surface may introduce problems in subsequent pelletization of the concentrate. A possible way to restore the wettability of the surface could be by modifying the surface with a hydrophilic polymer. The effect of hydrophilic polymers of different types, viz. cationic, anionic, and non-ionic, on the wettability of the magnetite surface after adsorption of a surfactant was investigated. Although all the polymers could adsorb on magnetite at pH 8.5, the contact angle measurements revealed that only anionic ammonium polyacrylate could decrease the contact angle of synthetic magnetite after surfactant adsorption to a level close to that of as-synthesized magnetite. Such effect was probably achieved due to shielding of the hydrophobic surfactant chains from the aqueous phase by hydrophilic polyacrylate molecules. The fact that polyacrylate adsorption on magnetite occurred via calcium ions makes polyacrylate suitable for application in calcium-rich process water. The results presented in this work illustrate that ammonium polyacrylate could be successfully used to improve the wettability of magnetite after adsorption of surfactants.  相似文献   

15.
Vertical emulsion films with particle monolayers at their surfaces have been studied by direct microscope observations. The effects of particle wettability and surface coverage on the structure and stability of water films in octane and octane films in water have been investigated. Monodisperse silica particles (3 microm in diameter) hydrophobized to different extents have been used. It is found that the structure and stability of emulsion films strongly depend on the film type (water-in-oil or oil-in-water), the particle contact angle, the interactions between particles from the same and the opposite monolayer, and the monolayer density. Stable films are observed only when the particle wettability fulfills the condition for stable particle bridges--in agreement with the concept that hydrophilic particles can give stable oil-in-water emulsions, whereas hydrophobic ones give water-in-oil emulsions. In the case of water films with dilute disordered monolayers at their surfaces, the hydrophilic particles are expelled from the film center toward its periphery, giving a dimple surrounded by a ring of particles bridging the film surfaces. In contrast, the thinning of octane films with dilute ordered monolayers at their surfaces finally leads to the spontaneous formation of a dense crystalline monolayer of hydrophobic particles bridging both surfaces at the center of the film. The behaviors of water and octane films with dense close-packed particle monolayers at their surfaces are very similar. In both cases, a transition from bilayer to bridging monolayer is observed at rather low capillary pressures. The implications of the above finding for particle stabilized emulsions are discussed.  相似文献   

16.
17.
The adsorption of a solute on a solid can be followed by contact angle measurements of a drop of the solution on the solid. The Gibbs isotherm model can be used for quantitative interpretation of wettability variations. Its use in linking the wettability to the adsorption isotherm involves assimilating the Gibbs' planes to the surfaces themselves. Within this framework, these interpretations lead to the conclusion that adsorption of surface-active agents is greater on solid-vapor interfaces than on solid-liquid interfaces, for hydrophilic solids. This is not the only approach. Thermodynamics allows other formalisms, the conclusions of which can be completely different. We present a thermodynamic approach which explicitly reveals relationships between surface tensions and contents of surfaces, without referring to the Gibbs' plane. This permits us to explain the behavior of a drop of surfactant solution put on hydrophilic or hydrophobic solids with conclusions different from those reached using the Gibbs approach. We show that all these thermodynamic approaches are linked; they do not dismiss one another but give different views of the same phenomenon. Copyright 2000 Academic Press.  相似文献   

18.
《印度化学会志》2023,100(10):101085
Mineral wool materials are consistently preferred material to be used for building thermal insulation because of their low heat conductivity, making energy-efficient structures impossible to construct without highly insulating thermal envelopes. A mineral wool with a hydrophobic external surface could be used for several applications where hydrophobicity would be helpful. Organo-silanes are one of the most promising materials to impart hydrophobic character to varied surfaces to achieve performance properties such as dust-resistant coatings on building glass, solar panels with self-cleaning surfaces, biofouling resistant paints, self-cleaning car windshields etc. In this study, mineral wool was treated with methyltrimethoxysilane (MTMS) to achieve hydrophobic surfaces.A Fourier Transform Infrared Spectrometer is used to confirm the successful deposition of organosilane/siloxane networks on glass wool fibre surfaces. The hydrophobicity of treated wool was assessed and quantified using a contact angle measurement. Contact angle measurement was used to quantify the hydrophobicity of treated wool. The thermal conductivity of treated mineral wool fiber was calculated using the portable Lee's disc method. To determine the thermal stability and crystallinity of the treated wool, X-ray diffraction spectroscopy and thermogravimetric analysis were used, respectively. The treated mineral wool exhibited excellent thermal stability up to 800 °C, and wettability tests proved the treated surface highly hydrophobic, allowing water droplets to roll off with contact angles up to 134.9°. Surface modification reduced thermal conductivity by 20%, showing good thermal resistance. Here, we show easy and sustainable methods of treating mineral wool surfaces, which can serve as a thermal insulation option under humid conditions.  相似文献   

19.
Heterogeneous reactions between organic films, taken as proxies for atmospheric aerosols, with ozone in presence of simulated sunlight and the photosensitizer 4-carboxybenzophenone (4-CB) were observed to alter surface properties as monitored by contact angle during the reaction. Attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) was used in addition for product identification. Two types of model surfaces were systematically studied: 4-CB/4-phenoxyphenol and 4-CB/catechol. Solid organic films made of 4-CB/catechol were observed to become hydrophilic by simultaneous exposure to ozone and simulated sunlight, whereas organic films made of 4-CB/4-phenoxyphenol become hydrophobic under the same conditions. These changes in contact angle indicate that photo-induced aging processes involving ozone (such as oligomerisation) not necessarily favour increased hygroscopicity of organic aerosols in the atmosphere. The ratio between hydrophobic and hydrophilic functional groups should reflect the chemical property of organic films with respect to wettability phenomena. Contact angles and surface tensions of the exposed organic film made of 4-CB/4-phenoxyphenol were found to correspond to the hydrophobic/hydrophilic ratios obtained from the FTIR-ATR spectra.  相似文献   

20.
We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces. The stability of plasma-induced silanol groups was investigated by contact angle measurements using ethylene glycol as a probe liquid. The Si-OH surface coverage decreased rapidly under vacuum or thermal treatment to give rise to hydrophobic dehydrated surfaces. The stability of end-grafted monofunctionalized n-alkylsilanes was investigated in different solvents and at different pH using water contact angle measurements. The degrafting of alkylsilanes from the activated mica was promoted in acidic aqueous solutions. This detachment was associated with the hydrolysis of covalent bonds between the alkylsilanes and the mica surface. The monolayer stability was enhanced by increasing the length of the alkyl chains that probably act as a hydrophobic protective layer against hydrolysis reactions. Stable alkylsilane monolayers in water with pH greater than 5.5 were obtained on mica surfaces activated at low plasma pressure. We attributed this stability to the loss of surface Al atoms induced by the plasma treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号