首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Hollow polylactide microcapsules that can be used as ultrasound contrast agents were prepared using premix membrane emulsification. Polylactide/dichloromethane and dodecane solutions were emulsified together with a nonsolvent phase (water or a water–alcohol mixture) by repeated passage through a glass fibre membrane. The solvent, dichloromethane, diffuses out of the droplets and the polylactide solidifies around a droplet of dodecane. To investigate the effect of the nonsolvent properties on the size and span of the microcapsules, different methanol–water, ethanol–water and 2-propanol–water mixtures were used as nonsolvents.  相似文献   

2.
The porous structure of copolymers obtained by suspension polymerization has been investigated. Three different copolymers were synthesized—styrene‐divinylbenzene, ethylene glycol dimethacrylate‐divinylbenzene, and 1,4‐phenylene dimethacrylate‐divinylbenzene. All the copolymers were porous. As a pore‐forming diluent, the mixture of toluene (good solvent) and n‐dodecane (nonsolvent) was used. The influence of the composition of two‐component diluent on the porous structure of the copolymers has been examined. Surface areas, pore volumes, pore size distributions, skeletal and apparent densities, and swellability coefficients were determined for the copolymers obtained in the presence of 0, 15, 50, 85, and 100% (v/v) toluene in the mixture with n‐dodecane. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3079–3085, 2002  相似文献   

3.
The influence of different dilution procedures on the properties of oil-in-water (O/W) nano-emulsions obtained by dilution of oil-in-water (O/W) and water-in-oil (W/O) microemulsions has been studied. The system water/SDS/cosurfactant/dodecane with either hexanol or pentanol as cosurfactant was chosen as model system. The dilution procedures consisted of adding water (or microemulsion) stepwise or at once over a microemulsion (or water). Starting emulsification from O/W microemulsions, nano-emulsions with droplet diameters of 20 nm are obtained, independently on the microemulsion composition and the dilution procedure used. In contrast, starting emulsification from W/O microemulsions, nano-emulsions are only obtained if the emulsification conditions allow reaching the equilibrium in an O/W microemulsion domain during the process. These conditions are achieved by stepwise addition of water over W/O microemulsions with O/S ratios at which a direct microemulsion domain is crossed during emulsification. The nature of the alcohol used as cosurfactant has been found to play a key role on the properties of the nano-emulsions obtained: nano-emulsions in the system using hexanol as cosurfactant are smaller in size, lower in polydispersity, and have a higher stability than those with pentanol.  相似文献   

4.
Catanionic microemulsions formed by dodecyltrimethylammonium bromide (DTAB), sodium dodecyl sulfate (SDS), n-hexanol, dodecane, and citrate buffer have been characterized by using dynamic light scattering (DLS) and spectroscopic studies. While the DLS measurements provide information about the hydrodynamic diameters of the microemulsion droplets formed upon variation of the constituents, steady-state and time-resolved fluorescence emission experiments probe the polarity and the dynamics of the trapped solvent pool inside of the microemulsion droplets of nanometer dimension. In addition, time-resolved fluorescence anisotropy shows the rigidity of the confined solvent pool as well as the coupling between the motion of a solute and those of the solvent molecules. The results obtained from the DLS and those from the steady-state and time-resolved fluorescence emission studies have been found to correlate well with the superactivity of horseradish peroxidase enzyme in the catanionic microemulsions. Subsequently, the time-zero estimate for the dynamic Stokes shift in these microemulsions reveals that approximately 50% of the total solvent dynamical response is missed due to the limited time resolution employed in our experiments. The amplitude of the missing portion is similar to what has been observed recently for nanoscopic water by Fayer and co-workers (Piletic, I. R.; Tan, H.-S.; Fayer, M. D. J. Phys. Chem. B 2005, 109, 21273).  相似文献   

5.
Microemulsions are stable mixtures of a polar solvent, surfactant and an unpolar solvent. Ionic liquids (ILs, i.e. salts with melting points below 100 °C) are a huge class of potentially promising solvents. We discuss here published structural or thermodynamic investigations concerning microemulsions in which one or more of the three classical components are ILs.In microemulsions IL can replace respectively the “oil”, the “surfactant” and the “water” phase. Experimental proofs of the existence and stability of microemulsions are given as well as hints at their microstructure. While the four regimes initially defined by Winsor are all accessible, most of the examples of microemulsions containing ionic liquids belong to the class of “rigid” microemulsions. Since additional solutes have characteristic distribution coefficients for each pseudo phase, IL based microemulsions may provide a useful tool for solubilization (reaction medium) and separation, thus allowing the recovery of a large variety of reaction products, but also waste. Further to a discussion of phase diagrams and thermodynamics, we will show some application examples and propose challenges for future studies, in this vast but only emerging domain.  相似文献   

6.
We study the percolation behavior of the water-in-oil (w/o) droplet phase of AOT (sodium bis[2-ethylhexyl] sulfosuccinate)-based microemulsions with different alkylbenzenes (toluene, ethylbenzene, butylbenzene or octylbenzene) as oil phase. We use microemulsions of varying composition with molar water to surfactant ratios 0≤W≤ 50 and droplet (water plus surfactant) volume fractions 10%≤φ≤50%. Using dielectric spectroscopy, a percolation transition is observed in w/o microemulsions with butylbenzene or octylbenzene. With increasing molecular weight of the alkylbenzene, the percolation temperature T(P) decreases. The structure of the microemulsions is determined by small angle X-ray scattering (SAXS). With increasing molar weight of the alkylbenzene, the stability range of the L(2) droplet phase extends to higher W. The larger amount of solubilizable water can be related to variable oil penetration of the AOT monolayer, which affects the spontaneous curvature of the surfactant shell.  相似文献   

7.
Lamellae (symmetric) forming polystyrene‐b‐poly(4‐vinylpyridine) (PS‐b‐P4VP) block copolymers (BCPs) were used to produce nanostructured thin films by solvent (toluene) casting (spin‐coating) onto silicon substrates. As expected, strong micellization of PS‐P4VP in toluene results in poorly ordered hexagonally structures films. Following deposition the films were solvent annealed in various solvents and mixtures thereof. A range of both morphologies including micelle and microphase separated structures were observed. It was found that nanostructures typical of films of regular thickness (across the substrate) and demonstrating microphase separation occurred only for relatively few solvents and mixtures. The data demonstrate that simple models of solvent annealing based on swelling of the polymer promoting higher polymer chain mobility are not appropriate and more careful rationalization is required to understand these data. Analysis suggests that regular phase separated films can only be achieved when the copolymer Hildebrand solubility parameter is very similar to the value of the solvent. It is suggested that the solvent anneal method used is best considered as a liquid phase technique rather than a vapor phase method. The results show that solvent annealing methods can be a very powerful means to control structure and in some circumstances dominate other factors such as surface chemistry and surface energies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Time-resolved optical Kerr effect spectroscopy has been used to probe the molecular environment afforded by the hydrophobic core of oil-in-water microemulsions. This was achieved by measuring the ultrafast dynamics of a series of benzene derivatives (benzonitrile, nitrobenzene, fluorobenzene, styrene, and toluene) incorporated as the oil phase within oil-in-water microemulsions and comparing them to the dynamics in neat liquid and the liquid diluted in nonpolar solvent. Polar and strongly interacting liquids (benzonitrile and nitrobenzene) showed dynamics in the microemulsion that are similar to those in the solution phase, while weakly interacting and mildly polar liquids (fluorobenzene, styrene and toluene) reveal dynamics more similar to those of the neat liquid. This suggests stabilization of the polar dispersed phase in polar regions of the micelle.  相似文献   

9.
The interfacial properties of water-in-diluted bitumen emulsions were studied using micropipette techniques. It was observed that, as bitumen concentration in the bulk phase (C0) increased, the interfacial tension on the water droplet surfaces decreased. In addition, there was a small effect on the interfacial tension when different solvent mixtures were used. Mixtures of toluene and heptane in different ratios were used as solvents for bitumen dilution. Crumpling of the interface was influenced by bitumen concentration and type of solvent. No crumpling was found for bitumen content less than 0.01% for all solvents used. Crumpling was observed at higher bitumen concentrations when deionized water (pH 5.4-5.6) was used. Setting "heptol[A]" to be the mixture of toluene and heptane, with the volume percent of toluene being A, the following were concluded. Crumpling disappeared at C0 > 1% and when heptol[100] was used, and also at C0 > 10% and when heptol[30] was used. Crumpling was strongly affected by the water pH. In the case of heptol[50], at a higher pH, the crumpling region that normally occurred at C0 > 0.01% disappeared. The micropipette technique proved to be useful in studying the interfacial properties of micrometer-sized emulsion drops.  相似文献   

10.
非水反相微乳的加溶与电导性质研究   总被引:7,自引:0,他引:7  
研究了若干非水极性溶剂(甲酰胺、二甲基亚砜和乙腈)及其与水的混合物/AOT/正庚烷反相微乳体系的加溶性质及其电导行为.结果表明,在AOT反相微乳中,非水极性溶剂的最大加溶量均远小于水的加溶量.其最大加溶量顺序为二甲基亚砜< 甲酰胺< 乙腈< 水.甲酰胺和乙腈与水的加溶相互抵制,而水在一定范围内可促进二甲基亚砜的加溶.非水反相微乳的电导率随加溶量的变化规律与含水反相微乳体系类同,但到达电导率极大值和出现渗滤时的加溶量明显比含水反相微乳 体系的要小.  相似文献   

11.
This paper is focused on the formation of organically and inorganically passivated cadmium sulfide (CdS) nanoparticles in two different types of microemulsions. On the one hand, we used a ternary inverse microemulsion consisting of water, heptanol, and 3-(N,N-dimethyldodecylammonio)propanesulfonate and on the other hand, a poly(ethyleneimine)-based quaternary microemulsion containing water, toluene, pentanol, and sodium dodecylsulfate. UV-vis measurements confirm the formation of CdS-ZnS core-shell nanoparticles in the ternary microemulsion. Using the quaternary microemulsion template phase, polymer capped luminescent CdS nanoparticles can be formed. After a complete solvent evaporation, the nanoparticles are redispersed in water and characterized by means of dynamic light scattering and transmission electron microscopy. From the ternary microemulsion, well-stabilized CdS-ZnS core-shell nanoparticles with diameters of about 5 nm can be redispersed, but from the quaternary microemulsion, only nanoparticle aggregates of about 100 nm.  相似文献   

12.
During the last two decades reactions in microemulsions have developed into an emerging technology. In most instances oil-continuous microemulsions (w/o systems) have been used and the water droplets have proven useful as “minireactors” for various types of syntheses. This review discusses recent advances in the fields of organic and bioorganic reactions in microemulsions. In preparative organic synthesis microemulsions are of interest to overcome incompatibility problems between nonpolar organic compounds and inorganic salts. For this purpose, microemulsions can be regarded as an alternative to two-phase systems with added phase transfer reagents. Properly formulated microemulsions may also accelerate organic reactions, various mechanisms of such rate enhancements are discussed. Transition from a homogeneous solvent system to a microemulsion may also affect the regioselectivity of organic reactions due to orientation of reactants at the oil-water interface. In bioorganic synthesis, microemulsions are of interest as a reaction medium for several reasons: (i) nonpolar substrates can be dissolved in high concentrations, (ii) thermodynamic equilibria of condensation/hydrolysis reactions can be shifted by adjusting water content, (iii) enzymes are sometimes found to be more stable and more active than in aqueous buffer. Lipases are the most widely used enzymes and reactions have been performed in different types of microemulsion systems. This review presents general aspects of enzymatic catalysis in microemulsions followed by a discussion of recent advances in preparative work focusing on lipase catalyzed processes.  相似文献   

13.
The present study investigated the transient formation of water-in-oil (W/O) emulsions of sodium bis(2-ethylhexyl) sulfosuccinate (aerosol OT, AOT) in a dodecane/water interfacial region and the anomalous uptake of water in the dodecane phase by in situ bright-field optical microscopy and water concentration measurements in detail. The hydrodynamic radius of the individual W/O emulsions in the dodecane phase was determined to be 0.1-1.2 μm from the analysis of their diffusion behavior; they are much larger than common W/O microemulsions (a few nanometers in radius). At first, they were formed spontaneously in the dodecane/water interfacial region without shaking, and they diffused away into the dodecane phase. Then, almost all of them vanished at the interface by fusion. Their number and the water concentration in the dodecane phase increased first and then decreased gradually. The formation mechanism was discussed with estimated concentration profiles of AOT and water molecules, which suggests that larger W/O emulsions of 0.01-0.44 μm in radius can be formed in the dodecane phase near the interface (within 2 μm) because the concentration of AOT becomes lower than that of water there.  相似文献   

14.
Recognizing the potential of the mixed solvent systems comprising ionic liquid as one of the constituents in real applications, the steady-state and time-resolved fluorescence behavior of C153 has been studied in neat 1-butyl-3-methylimidazolium hexafluorophosphate and its mixtures with nonpolar solvents, namely, toluene and 1,4-dioxane. No significant effect of the cosolvent on the steady-state absorption or fluorescence spectra of C153 in ionic liquid has been observed. Time-resolved fluorescence anisotropy measurements show a decrease of the rotational correlation time of C153 with gradual addition of the cosolvent. Solvation dynamics in ionic liquid-cosolvent mixtures is found to be biphasic, and a decrease of the average solvation time is observed with increasing amount of the cosolvent in solution. The time-zero spectrum of C153 is found to shift toward higher energy with gradual addition of the nonpolar solvent, suggesting that the probe molecule experiences a more nonpolar environment at the early stage of the dynamics in mixed solvents. The blue shift of the time-zero spectrum caused by the addition of the nonpolar solvent results in a larger Stokes shift of the time-dependent spectra due to solvent relaxation in mixed solvents. A comparison of the time-dependent spectral data of the ionic liquid-toluene and ionic liquid-dioxane systems shows that, while a small amount of toluene can significantly affect the dynamics, comparatively, a larger amount of dioxane is required to bring about the same effect. This is explained in terms of favorable interactions between toluene and the imidazolium ring system leading to a more effective solubilization of toluene in the cybotactic region of the probe.  相似文献   

15.
The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol), (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography.The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents.The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents.  相似文献   

16.
A novel class of p-xylene-in-water microemulsions mainly based on nonionic surfactants and their application as low impact cleaning tool in cultural heritage conservation is presented. Alkyl polyglycosides (APG) and Triton X-100 surfactants allow obtaining very effective low impact oil-in-water (o/w) microemulsions as alternatives to pure organic solvents for the removal of polymers (particularly Paraloid B72 and Primal AC33) applied during previous conservation treatments. The ternary APG/p-xylene/water microemulsions have been characterized by quasi elastic light scattering to obtain the hydrodynamic radius and the polydispersity of the microemulsion droplets. Laplace inversion of the correlation function CONTIN analysis provided evidence of acrylic copolymers solubilization into the oil nanodroplets. Contact angle, Fourier transform infrared (FTIR), and scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) data confirmed that microemulsions were effective in removing polymer coatings. The phase diagram of APG microemulsions showed that a reduction >90% (compared to the conventional cleaning methods) of the organic solvent can be achieved by using o/w microemulsions. The microemulsions were successfully tested in two real cases: (1) the APG based microemulsion was used in a Renaissance painting by Vecchietta in Santa Maria della Scala, Siena, Italy, degraded by the presence of a polyacrylate coating applied during a previous restoration and (2) a Triton X-100 oil-in-water microemulsion containing (NH4)2CO3 in the water continuous phase. The association of ammoniun carbonate to the microemusion led to the swelling of an organic deposit (mainly asphaltenes deposited on the fresco in the Oratorio di San Nicola al Ceppo in Florence, still contamined by the water of the Arno river during the 1966 flood) and a very efficient removal of highly insoluble inorganic deposits (mainly gypsum) strongly associated to asphaltenes. These innovative systems are very attractive for the low amount of organic solvent used to extract the polymers or highly insoluble substances as the asphaltene and the very efficient and mild impact of the cleaning procedure on the fragile painted surfaces.  相似文献   

17.
The activity of the enzyme horse radish peroxidase (HRP) is studied in a series of reverse microemulsions composed of dodecane, aqueous buffer, sodium dodecylsufate (SDS) and alcohols of the homologous series 1-butanol to 1-octanol. The HRP catalyzed reaction is the oxidation of a classical water soluble substrate, the 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) by hydrogen peroxide. In parallel electrical conductivity measurements are performed on the same solutions. The structural changes in the microemulsions, as inferred by the conductivity measurements, correlate remarkably well with the changes in the enzymatic activities. In particular it is found that (a) the maximum activity of the enzyme is always related to its optimum hydration and that this hydration can be related to the microemulsion structures, (b) the enzyme inhibition caused by the alcohols in microemulsions is a consequence of both the solubility of the alcohols in the buffer and the rigidity of the interfacial film. Consequently, it can be concluded that enzymatic activity measurements are a valuable tool to study confined systems such as microemulsions and, in particular, the amount of available hydration water. Enzymatic activities can be finely tuned by small changes in microemulsion structures, probably in a predictive way.  相似文献   

18.
A study of the effect of the various solution components on the kinetics of the polymerization of acrylamide in water/oil (w/o) microemulsions has been performed. For the polymerizations with toluene as the continuous phase, both the rate of polymerization, Rp, and the molecular weight of the polyacrylamide were found to be first order in monomer concentration. Furthermore, for the low temperatures (10°C) involved in these experiments, nondegradative chain transfer to monomer appears to be insignificant. When the continuous-phase solvent was changed, an exponential dependence, X, of Rp on the incident light intensity in the order of toluene (X = 1.06) > heptane (X = 0.73) > benzene (X = 0.55) was found. Thus, the monoradical termination found in the toluene microemulsions is likely due to degradative transfer to toluene, forming a stable benzyl radical, while polymerization in benzene (no labile hydrogen atoms) leads to biradical termination  相似文献   

19.
20.
The nonaqueous ionic liquid (IL) microemulsions composed of 1-butyl-3-methylimidazolium tetrafluoroborate, Triton X-100, and toluene were prepared and the electrochemical properties of the nonaqueous IL microemulsions were investigated in this paper. It is shown that characteristics of the nonaqueous IL microemulsions such as electrical conductivity, electrochemical window, and solubility are good, which indicate that the nonaqueous IL microemulsions can be used as electrolyte for electrochemical research. The electrochemical properties of the nonaqueous IL microemulsions were researched by cyclic voltammetry (CV) and electrochemical impedance spectroscopy methods using potassium ferricyanide as electroactive probe. It was found that the reversibility was better and the peak current densities of CV were higher for the [Fe(CN)6]3−/[Fe(CN)6]4− electrode reaction in the nonaqueous IL microemulsions than those in IL. However, the electrochemical behavior of the probe in the nonaqueous IL microemulsions with different microenvironments (oil-in-IL, IL-in-oil, and bicontinuous) was different. The electrochemical property of the probe in the oil-in-IL microemulsion was the best, which was studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号