首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteomic analysis of chicken eggshell cuticle membrane layer   总被引:1,自引:0,他引:1  
The eggshell is a barrier that plays an important role in the defense of the egg against microbial and other infections; it protects the developing bird against unfavorable impacts of the environment and is essential for the reproduction of birds. The avian eggshell is a complex structure that is formed during movement along the oviduct by producing a multilayered mineral-organic composite. The extractable proteins of avian eggshells have been studied extensively and many of them identified, however, the insoluble (non-extractable) proteins have been sparsely studied. We studied the EDTA-insoluble proteinaceous film from the cuticle layer of eggshell. This film consists of three main areas: spots (cca 300 μm diameter), blotches (small spots with diameter only tens of μm), and the surroundings (i.e., the area without spots and blotches) where spots contain a visible accumulation of pigment. These areas were cut out of the membrane by laser microdissection, proteins were cleavaged by trypsin, and the peptides were analyzed by nLC/MS (Q-TOF). This study has identified 29 proteins and a further eight were determined by less specific “cleavage” with semitrypsin. The relative abundances of these proteins were determined using the exponentially modified protein abundance index (emPAI) where the most dominant proteins were eggshell-specific ones, such as ovocleidin-17 and ovocleidin-116. Individual areas of the cuticle membrane differ in their relative proportions of 14 proteins, where significant differences between the three quantification criteria (direct, after normalization to ovocledin-17, or to ovocledin-116) were observed in four proteins.  相似文献   

2.
The precipitation of calcium oxalate monohydrate (COM) was monitored at a Langmuir monolayer containing lipid raft domains. The raft-forming monolayer consists of a 2:1:1 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/sphingomyelin/dihydrocholesterol, where the raft liquid ordered phase is enriched in sphingomyelin and the sterol. COM crystals, monitored by Brewster angle microscopy, appear at the phase boundary between the raft domains and the expanded phase.  相似文献   

3.
Proteomic approach to the identification of cell membrane proteins   总被引:4,自引:0,他引:4  
The expression of plasma membrane proteins in human monocyte-derived U937 cells was examined by cell disruption and isolation of microsomal fractions. Two alternative procedures for cell disruption, Dounce homogenization and nitrogen cavitation, were compared. Cell homogenization and sequential centrifugation resulted in an approximately fivefold enrichment of plasma membrane proteins in the microsomal fraction. However, identification of 30 such apparently enriched proteins by two-dimensional (2-D) electrophoresis, proteolytic digestion, and mass spectrometry revealed that only eight were plasma membrane proteins, the remaining 22 being contaminants. In contrast, nitrogen cavitation followed by sequential centrifugation and solubilization of proteins with sodium dodecyl sulfate (SDS) and 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS) detergent yielded subcellular fractions, including microsomes, that showed little overlap in constituent proteins as revealed by 2-D electrophoresis. These results highlight the importance of obtaining pure plasma membranes and complete solubilization of membrane proteins for proteomic analysis.  相似文献   

4.
Proteomic analysis of transducin beta-subunit structural heterogeneity   总被引:1,自引:0,他引:1  
Clack JW  Juhl M  Rice CA  Li J  Witzmann FA 《Electrophoresis》2003,24(19-20):3493-3499
Partially purified transducin was resolved using two-dimensional gel electrophoresis (2-DE). Peptide mass fingerprinting of several different spots believed to correspond to the 37 kDa beta-subunit of transducin (T(beta)) was performed. Spots were excised and proteolyzed using modified trypsin. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was performed on the peptide mixture resulting from each spot. As many as six spots with different pI, ranging from 5.2 to 6.1, were observed when separated using 2-DE. MALDI peptide mass fingerprinting determined with high probability that all of the spots were the same gene product, guanine nucleotide-binding protein G(I)/G(S)/G(T) beta-subunit 1 (GNB1; T(beta1)). This suggested that post-translational modification was responsible for the differences in pI. Phosphorylation experiments showed that at least one T(beta1) spot was phosphorylated in vitro with [gamma-(32)P]ATP by an endogenous kinase. Treatment of T(beta) with alkaline phosphatase caused a large change in the spot pattern of T(beta), suggesting that phosphorylated T(beta) is a substrate for alkaline phosphatase. We conclude that T(beta1) constitutes over 99% of the T(beta) expressed in bovine rod outer segments and displays structural heterogeneity that is due to post-translational modification. We also conclude that some, but not all, of the heterogeneity observed is due to phosphorylation of Tb1.  相似文献   

5.
The skeleton of the human body is built of cartilage and bone, which are tissues that contain extensive amounts of extracellular matrix (ECM). In bone, inorganic mineral hydroxyapatite forms 50-70% of the whole weight of the tissue. Although the organic matrix of bone consists of numerous proteins, 90% of it is composed of type I collagen. In cartilage, ECM forms a major fraction of the tissue, type II collagen and aggrecans being the most abundant macromolecules. It is obvious that the high content of ECM components causes analytical problems in the proteomic analysis of cartilage and bone, analogous to those in the analysis of low-abundance proteins present in serum. The massive contents of carbohydrates present in cartilage proteoglycans, and hydroxyapatite in bone, further complicate the situation. However, the development of proteomic tools makes them more and more tempting also for research of musculoskeletal tissues. Application of proteomic techniques to the research of chondrocytes, osteoblasts, osteocytes, and osteoclasts in cell cultures can immediately benefit from the present knowledge. Here we make an overview to previous proteomic research of cartilage- and bone-associated samples and evaluate the future prospects of applying proteomic techniques to investigate key events, such as cellular signal transduction, in cartilage- and bone-derived cells.  相似文献   

6.
Chondrocytes are the only cell type present in mature articular cartilage (2-5% of total tissue). The biological activities of the chondrocyte population are regulated by genetic, biologic and biochemical factors, as well as environmental factors (stress, flow and electric field). Although compressive forces within joint articular cartilage are required for maintenance of the normal composition of articular cartilage, there is a lack of knowledge about the number of pressure-related proteins expressed in articular cartilage. Two-dimensional gel electrophoresis (2-DE) and high-performance liquid chromatography-electrospray/tandem mass spectrometry (HPLC/ESI-MS/MS) were used to identify the levels of pressure-related proteins expressed by chondrocytes grown in the presence or absence of hydrostatic pressure. A total of 266 spots were excised from the gels and analyzed by HPLC/ESI-MS/MS. Functional classification of up-regulated proteins indicated that energy and protein fate were the main biological processes occurring in pressurized chondrocytes. Furthermore, membrane-bound transferrin-like protein p97, a marker of chondrocyte differentiation, was only expressed in chondrocytes under hydrostatic pressure. These data suggest that hydrostatic pressure can induce cell differentiation by increasing the expression level of energy metabolism- and protein fate-related proteins, indicating that hydrostatic pressure may be needed for normal biosynthesis and differentiation of articular chondrocytes.  相似文献   

7.
The proteomic definition of plasma membrane proteins is an important initial step in searching for novel tumor marker proteins expressed during the different stages of cancer progression. However, due to the charge heterogeneity and poor solubility of membrane-associated proteins this subsection of the cell's proteome is often refractory to two-dimensional electrophoresis (2-DE), the current paradigm technology for studying protein expression profiles. Here, we describe a non-2-DE method for identifying membrane proteins. Proteins from an enriched membrane preparation of the human colorectal carcinoma cell line LIM1215 were initially fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, 4-20%). The unstained gel was cut into 16 x 3 mm slices, and peptide mixtures resulting from in-gel tryptic digestion of each slice were individually subjected to capillary-column reversed phase-high performance liquid chromatography (RP-HPLC) coupled with electrospray ionization-ion trap-mass spectrometry (ESI-IT-MS). Interrogation of genomic databases with the resulting collision-induced dissociation (CID) generated peptide ion fragment data was used to identify the proteins in each gel slice. Over 284 proteins (including 92 membrane proteins) were identified, including many integral membrane proteins not previously identified by 2-DE, many proteins seen at the genomic level only, as well as several proteins identified by expressed sequence tags (ESTs) only. Additionally, a number of peptides, identified by de novo MS sequence analysis, have not been described in the databases. Further, a "targeted" ion approach was used to unambiguously identify known low-abundance plasma membrane proteins, using the membrane-associated A33 antigen, a gastrointestinal-specific epithelial cell protein, as an example. Following localization of the A33 antigen in the gel by immunoblotting, ions corresponding to the theoretical A33 antigen tryptic peptide masses were selected using an "inclusion" mass list for automated sequence analysis. Six peptides corresponding to the A33 antigen, present at levels well below those accessible using the standard automated "nontargeted" approach, were identified. The membrane protein database may be accessed via the World Wide Web (WWW) at http://www.ludwig. edu.au/jpsl/jpslhome.html.  相似文献   

8.
Proteomic analysis of the Arabidopsis thaliana cell wall   总被引:1,自引:0,他引:1  
With the completion of the Arabidopsis genome, many hypothetical proteins have been predicted without any information on their expression, subcellular localisation and function. We have performed proteomic analysis of proteins sequentially extracted from enriched Arabidopsis cell wall fractions and separated by two-dimensional gel electrophoresis (2-DE). The proteins were identified by peptide mass fingerprinting using matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry and genomic database searches. This is part of a targeted exercise to establish the entire Arabidopsis secretome database. We report evidence for new proteins of unknown function whose existence had been predicted from genomic sequences and, furthermore, localise them to the cell wall. In addition, we observed an unexpected presence in the cell wall preparations of proteins whose known biochemical activity has never been associated with this compartment hitherto. We discuss the implications of these findings and present results suggesting a possible involvement of cell wall kinases in plant responses to pathogen attack.  相似文献   

9.
Proteomic analysis of protein oxidation in Alzheimer's disease brain   总被引:9,自引:0,他引:9  
There is a growing body of evidence that oxidative stress plays a major role in Alzheimer's disease (AD) pathogenesis. Identification of oxidatively altered proteins in AD is important for understanding the relationship between protein oxidation, protein aggregation and neurodegeneration. In this communication, we report a method that can be applied to study oxidative changes of individual proteins in brain. In order to analyze protein oxidation by detection of protein-bound carbonyls, cytosolic protein extracts were derivatized with 2,4-dinitrophenylhydrazine (DNPH) and then separated by two-dimensional (2-D) gel electrophoresis. After electrotransfer to polyvinylidene difluoride (PVDF) membranes, proteins were first stained with Sypro Ruby protein stain, and then the oxidized proteins were detected with anti-dinitrophenyl (DNP) antibody. About 150 proteins and more than 100 oxidized proteins were detected and quantified in both AD and control cases by 2-D image analysis. The amount of protein-bound carbonyls was decreased for six and increased for one protein in AD. The amount of protein was increased for three proteins in AD. Furthermore, the degree of oxidation was calculated as the ratio of protein-bound carbonyls to the total amount of an individual protein. Two proteins showed a significant decrease in the degree of oxidation in AD. Our results suggest that the balance of protein oxidation and degradation is altered in AD.  相似文献   

10.
Trypanosoma cruzi, the causative agent of the Chagas disease, has a complex life cycle alternating between replicative and noninfective forms with nonreplicative and infective forms of the parasite. Metacyclogenesis is a process that takes place in the invertebrate host, comprising morphogenetic transformation from a noninfective form to an infective form, such that parasites acquire the ability to invade human cells. We analyze here the metacyclogenesis process by 2D electrophoresis coupled to MALDI-TOF MS. A large proportion of unique proteins expressed during metacyclogenesis were observed. Interestingly, 50% of the spots were found to differ between epimastigotes and trypomastigotes. We provide a 2D map of the infective metacyclic trypomastigotes. Sixty six protein spots were successfully identified corresponding to 43 different proteins. We analyzed the expression profiles for the identified proteins along metacyclogenesis and classified them into three groups according to their maximal level of expression. We detected several isoforms for a number of proteins, some displaying differential expression during metacyclogenesis. These results suggest that posttranslational modifications may be a fundamental part of the parasite's strategy for regulating gene expression during differentiation. This study contributes to the identification of relevant proteins involved in the metacyclogenesis process. The identification and molecular characterization of these proteins will render vital information about the steps of the parasite differentiation into the infective form.  相似文献   

11.
Epilepsy affects more than 0.5% of the world population and is known to be associated with a large genetic component eliciting an electrical hyperexcitability in the central nervous system. However, its pathogenic mechanisms remain poorly understood. In order to gain greater molecular incite in the pathogenesis in epilepsy, we analyzed proteomes of human cerebral cortices. Quantitative proteome analysis was used to compare signals corresponding to individual proteins between epileptic cerebral cortices from patients with temporal lobe epilepsy and age-matched non-epileptic subjects. To minimize individual variations, gender and age of the patients were matched. Changes of several spots were consistent among 6 pairs of epileptic patients and nonepileptic subjects. One of the spots was identified as the mitochondrial type Mn-superoxide dismutase (Mn-SOD) confirmed by Western blot analysis with Mn-SOD antibody and enzyme activity assay. Such results were agreeable with chemical and physical parameters given by the 2-dimensional electrophoresis (2-DE) gel. Mn-SOD was consistently down-regulated in epileptic cerebral cortices compared with those of nonepileptic subjects. Our results demonstrate a clear link between pathogenesis of epilepsy and SOD. Additionally, we identified four proteins that were consistently over-expressed in all epileptic temporal neocortices specimens and the other four proteins that were found to be expressed less than non-epileptic control subjects. These proteomic data provide cellular markers in the understanding mechanism of the epilepsy pathogenesis.  相似文献   

12.
Proteomic analysis is often performed on homogenized preparations of whole tissues, which does not provide any information about relevant biochemical changes in specific cell types. Laser-capture microdissection (LCM) is a technique that is precise enough to dissect single cells within a tissue section. Phenotypically defined cells of interest may be visualized by immunostaining prior to microdissection. Previously published immunostaining protocols adapted to LCM require the use of very high antibody titers and very short incubation times. This raises the concern that low-abundance antigens would not be detected and that antisera would be rapidly depleted. In addition, protein recovery from samples was not evaluated in most of these studies. Here, we describe an optimized immunostaining method based on immunofluorescence. By comparing two-dimensional electrophoresis (2-DE) results obtained from immunostained LCM brain tissue samples to those obtained from unstained, manually dissected samples, we demonstrated that immunofluorescent staining gave comparable protein recovery and similar resolution of protein spots on 2-DE gels. Moreover, matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis of selected spots from gels derived from control and immunostained LCM samples revealed that the immunostaining process had minimal effect on protein identification. LCM of immunofluorescently labeled tissue sections is a practical and powerful method to perform proteomic studies on specifically defined cell groups.  相似文献   

13.
In this study, large-scale qualitative and quantitative proteomic technology was applied to the analysis of the opportunistic bacterial pathogen Pseudomonas aeruginosa grown under magnesium limitation, an environmental condition previously shown to induce expression of various virulence factors. For quantitative analysis, whole cell and membrane proteins were differentially labeled with isotope-coded affinity tag (ICAT) reagents and ICAT reagent-labeled peptides were separated by two-dimensional chromatography prior to analysis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) in an ion trap mass spectrometer (ITMS). To increase the number of protein identifications, gas-phase fractionation (GPF) in the m/z dimension was employed for analysis of ICAT peptides derived from whole cell extracts. The experiments confirmed expression of 1331 P. aeruginosa proteins of which 145 were differentially expressed upon limitation of magnesium. A number of conserved Gram-negative magnesium stress-response proteins involved in bacterial virulence were among the most abundant proteins induced in low magnesium. Comparative ICAT analysis of membrane versus whole cell protein indicated that growth of P. aeruginosa in low magnesium resulted in altered subcellular compartmentalization of large enzyme complexes such as ribosomes. This result was confirmed by 2-D PAGE analysis of P. aeruginosa outer membrane proteins. This study shows that large-scale quantitative proteomic technology can be successfully applied to the analysis of whole bacteria and to the discovery of functionally relevant biologic phenotypes.  相似文献   

14.
Oxidative stress is caused by an imbalance between formation and destruction of reactive oxygen species. Analysis of the reaction products of reactive oxygen species in biomolecules is an indirect way of determining the existence of oxidative stress. In this context, the formation of carbonyl groups in proteins has been one of the most studied oxidative stress markers because of its stability and easy detection. Various proteomic tools offer great potential for the discovery of new proteins susceptible to oxidative stress, determination of quantitative changes in the profile of these modifications under different biological conditions, and characterization of the type of modification it has suffered a particular protein. This paper reviews the different approaches used for the detection of protein carbonyls and the proteomic tools that can be used to identify them.  相似文献   

15.
A proteomic analysis was performed comparing normal rat soleus muscle to denervated soleus muscle at 0.5, 1, 2, 4, 6, 8 and 10 days post denervation. Muscle mass measurements demonstrated that the times of major mass changes occurred between 2 and 4 days post denervation. Proteomic analysis of the denervated soleus muscle during the atrophy process demonstrated statistically significant (at the p < 0.01 level) changes in 73 soleus proteins, including coordinated changes in select groups of proteins. Sequence analysis of ten differentially regulated proteins identified metabolic proteins, chaperone and contractile apparatus proteins. Together these data indicate that coordinated temporally regulated changes in the proteome occur during denervation-induced soleus muscle atrophy, including changes in muscle metabolism and contractile apparatus proteins.  相似文献   

16.
Owing to its labile nature, a new role for cysteine sulfenic acid (–SOH) modification has emerged. This oxidative modification modulates protein function by acting as a redox switch during cellular signaling. The identification of proteins that undergo this modification represents a methodological challenge, and its resolution remains a matter of current interest. The development of strategies to chemically modify cysteinyl‐containing peptides for liquid chromatography–tandem mass spectrometry (LC‐MS/MS) analysis has increased significantly within the past decade. The method of choice to selectively label sulfenic acid is based on the use of dimedone or its derivatives. For these chemical probes to be effective on a proteome‐wide level, their reactivity toward –SOH must be high to ensure reaction completion. In addition, the presence of an adduct should not interfere with electrospray ionization, the efficiency of induced dissociation in MS/MS experiments or with the identification of Cys‐modified peptides by automated database searching algorithms. Herein, we employ a targeted proteomics approach to study the electrospray ionization and fragmentation effects of different –SOH specific probes and compared them to commonly used alkylating agents. We then extend our study to a whole proteome extract using shotgun proteomic approaches. These experiments enable us to demonstrate that dimedone adducts do not interfere with electrospray by suppressing the ionization nor impede product ion assignment by automated search engines, which detect a + 138 Da increase from unmodified peptides. Collectively, these results suggest that dimedone can be a powerful tool to identify sulfenic acid modifications by high‐throughput shotgun proteomics of a whole proteome. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.

Background

Vitamin C (ascorbic acid) is an essential nutrient of most living tissues that readily acts as a strong reducing agent, which is abundant in fruits and vegetables. Although, it inhibits cell growth in many human cancer cells in vitro, treatment in cancer is still controversial. Hence, the purpose of this study was to investigate the molecular mechanism of the inhibitory effect of vitamin C on AGS cell growth, and protein profiles in AGS cells after exposure to vitamin C treatment, by using proteomic tools.

Results

Vitamin C showed a cytotoxic effect on AGS cells (IC50 300 μg/mL) and, 20 differentially expressed proteins (spot intensities which show ≥2 fold change and statistically significant, p<0.05 between the control and vitamin-C treated group) were successfully identified by assisted laser desorption/ ionization-time of flight/mass spectrometry (MALDI-TOF/MS). Of the 20 proteins, six were up-regulated and fourteen were down-regulated. Specifically, 14-3-3σ, 14-3-3?, 14-3-3δ, tropomyosin alpha-3 chain and tropomyosin alpha-4 chain were down-regulated and peroxiredoxin-4 and thioredoxin domain-containing proteins 5 were up-regulated. The identified proteins are mainly involved in cell mobility, antioxidant and detoxification, signal transduction and protein metabolism. Further, the expressions of 14-3-3 isoforms were verified with immuno-blotting analysis.

Conclusions

Our proteome results suggest that the apoptosis related proteins were involved in promoting and regulating cell death of AGS cells, and might be helpful to understand the molecular mechanism of vitamin C on AGS cell growth inhibition.
  相似文献   

18.
Proteomic analysis of simulated occupational jet fuel exposure in the lung   总被引:3,自引:0,他引:3  
We analyzed protein expression in the cytosolic fraction prepared from whole lung tissue in male Swiss-Webster mice exposed 1 h/day for seven days to aerosolized JP-8 jet fuel at concentrations of 1000 and 2500 mg/m3, simulating military occupational exposure. Lung cytosol samples were solubilized and separated via large scale, high resolution two-dimensional electrophoresis (2-DE) and gel patterns scanned, digitized and processed for statistical analysis. Significant quantitative and qualitative changes in tissue cytosol proteins resulted from jet fuel exposure. Several of the altered proteins were identified by peptide mass fingerprinting, confirmed by sequence tag analysis, and related to impaired protein synthetic machinery, toxic/metabolic stress and detoxification systems, ultrastructural damage, and functional responses to CO2 handling, acid-base homeostasis and fluid secretion. These results demonstrate a significant but comparatively moderate JP-8 effect on protein expression and corroborate previous morphological and biochemical evidence. Further molecular marker development and mechanistic inferences from these observations await proteomic analysis of whole tissue homogenates and other cell compartment, i.e., mitochondria, microsomes, and nuclei of lung and other targets.  相似文献   

19.
Proteomics is one of the most important issues in the post-genomic area, because it can greatly contribute to identifying protein biomarkers for disease diagnosis and drug screening. Protein array is a key technology for proteome researches and has been analyzed by various methods including fluorescence, mass spectrometry, atomic force microscopy and surface plasmon resonance (SPR). SPR biosensor is a promising technology in proteomics, since it has various advantages including real-time measurement of biomolecular interactions without labeling and the simple optical system for the device. SPR biosensors have a strong potential for analyzing proteomes by SPR imaging and SPR spectroscopic imaging, even though the challenge is to produce proteins on a proteomic scale.  相似文献   

20.
We analyzed protein expression in the cytosolic fraction prepared from whole kidneys in male Swiss-Webster mice exposed 1 h/day for five days to aerosolized JP-8 jet fuel at a concentration of 1000 mg/m3, simulating military occupational exposure. Kidney cytosol samples were solubilized and separated via large-scale, high-resolution two-dimensional electrophoresis (2-DE) and gel patterns scanned, digitized and processed for statistical analysis. Significant changes in soluble kidney proteins resulted from jet fuel exposure. Several of the altered proteins were identified by peptide mass finger-printing and related to ultrastructural abnormalities, altered protein processing, metabolic effects, and paradoxical stress protein/detoxification system responses. These results demonstrate a significant but comparatively moderate JP-8 effect on protein expression in the kidney and provide novel molecular evidence of JP-8 nephrotoxicity. Human risk is suggested by these data but conclusive assessment awaits a noninvasive search for biomarkers in JP-8 exposed humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号