首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过液相氢气还原法,在不同温度下制备出了不同(111)晶面占比的Pd单晶纳米颗粒,用活性炭吸附制备成Pd/C纳米催化剂。通过透射电子显微镜(TEM)、傅里叶变换(FFT)、X射线衍射(XRD)表征证实了低温下制备的Pd纳米颗粒具有较高的(111)晶面占比。氢氧脉冲滴定(H2-O2)和H2-程序升温脱附(H2-TPD)结果显示,上述催化剂表面吸附氢气量与其Pd(111)晶面占比呈线性关系。此外,该系列Pd/C催化剂具有相似的粒径4.3 nm以及较窄的尺寸分布,相近的孔隙参数和Pd负载量,从而可对比(111)晶面比例差异对其加氢性能的影响。3个探针反应(苯乙烯、环己烯和对硝基甲苯的加氢反应)的实验结果表明,相比于低(111)晶面暴露比例的Pd/C催化剂,含有高(111)晶面暴露比例的Pd/C催化剂显示出更高的加氢活性,且Pd(111)晶面比例与氢气消耗速率呈一定的线性关系,这归因于H2优先吸附于Pd(111)晶面促进了活性氢原子的形成。基于以上分析,高(111)晶面暴露的Pd基催化剂有利于加氢性能的提高。  相似文献   

2.
Nickel nanoparticles supported on silica were prepared by hydrazine reduction in aqueous medium. The obtained solids were characterized by X-ray diffraction (XRD), Transmission Electronic Microscopy (TEM), Electron Diffraction (ED), hydrogen chemisorption, and Temperature Programmed Desorption of hydrogen (H2-TPD). The catalytic properties were evaluated for benzene hydrogenation in the temperature range 75–230 °C. XRD patterns reveal presence of the metallic nickel particles with fcc structure. Metal dispersion and hydrogen storage increase with decreasing metal particle size. The H2-TPD profiles exhibit two domains, one due to desorption of hydrogen from Ni metal and another due to spillover from metal to the support. The catalytic activity strongly depends on the metal loading. It increases with decreasing metal loading. This is attributed to metal surface area, which also increases with decreasing metal loading. Kinetic studies of benzene hydrogenation on the Ni catalysts showed that the benzene partial order is around −2. This significant negative value is ascribed to a strong adsorption of benzene on the catalyst surface.  相似文献   

3.
WO3 colloidal suspensions obtained through a simple sol–gel procedure were subjected to a controlled temperature aging process whose time evolution in terms of particle mass and size distribution was followed by sedimentation field flow fractionation (SdFFF) and flow field flow fractionation (FlFFF). The experiments performed at a temperature of 60 °C showed that in a few hours the initially transparent sol of WO3 particles, whose size was less than 25 nm, undergoes a progressive size increase allowing nanoparticles to reach a maximum equivalent spherical size of about 130 nm after 5 h. The observed shift in particle size distribution maxima (SdFFF), the broadening of the curves (FlFFF) and the SEM–TEM observations suggest a mixed mechanism of growth-aggregation of initial nanocrystals to form larger particles. The photoelectrochemical properties of thin WO3 films obtained from the aged suspensions at regular intervals, were tested in a biased photoelectrocatalytic cell with 1 M H2SO4 under solar simulated irradiation. The current–voltage polarization curves recorded in the potential range 0–1.8 V (vs. SCE) showed a diminution of the maximum photocurrent from 3.7 mA cm−2 to 2.8 mA cm−2 with aging times of 1 h and 5 h, respectively. This loss of performance was mainly attributed to the reduction of the electroactive surface area of the sintered particles as suggested by the satisfactory linear correlation between the integrated photocurrent and the cyclic voltammetry cathodic wave area of the W(VI) → W(V) process measured in the dark.  相似文献   

4.
钯系双金属催化剂的制备及其表面性质   总被引:2,自引:0,他引:2  
研究了浸渍液的浓度和酸度,浸渍时间,竞争吸附剂对金属离子在Al_2O_3上分布的影响。制得了Pd呈不同分布的Pd-Al_2O_3催化剂,和金属呈不同分布的Pd-Pt-Al_2O_3,Pd-Co-Al_2O_3,Pd-Ni-Al_2O_3双金属催化剂。用光学照相和EDX表征了催化剂上金属的分布。用TEM法测定Pd-Al_2O_3催化剂金属粒度的结果表明,Pd在Al_2O_3上分布的形式不同,其粒度也不同,其粒度次序为:蛋黄型>蛋白型>蛋壳型>均匀型。而该催化剂的苯加氢活性次序为:蛋白型>蛋黄型>蛋壳型>均匀型。双金属催化剂的苯加氢活性也与金属分布有关。  相似文献   

5.
Samples of Pd/C and Pd–Ag/C, where C represents carbon nanofibers (CNFs), are synthesized by methane decomposition on a Ni–Cu–Fe/Al2O3 catalyst. The properties of Pd/CNF are studied in the reaction of selective hydrogenation of acetylene into ethylene. It is found that the activity of the catalyst in hydrogenation reaction increases, while selectivity decreases considerably when the palladium content rises. The obtained dependences are caused by the features of palladium’s interaction with the carbon support. At a low Pd content (up to 0.04 wt %) in the catalyst, the metal is inserted into the interlayer space of graphite and the catalytic activity is zero. It is established by EXAFS that the main share of palladium in catalysts of 0.05–0.1 wt % Pd/CNF constitutes the metal in the atomically dispersed state. The coordination environment of palladium atoms consists of carbon atoms. An increase in the palladium content in a Pd/CNF catalyst up to 0.3 wt % leads to the formation of highly dispersed (0.8–1 nm) Pd particles. The Pd/CNF samples where palladium is mainly in the atomically dispersed state exhibit the highest selectivity in the acetylene hydrogenation reaction. The addition of silver to a 0.1 wt % Pd/CNF catalyst initially probably leads to the formation of Pd–Ag clusters and then to alloyed Pd–Ag particles. An increase in the silver content in the catalyst above 0.3% causes the enlargement of the alloyed particles and the palladium atoms are blocked by a silver layer, which considerably decreases the catalytic activity in the selective hydrogenation of acetylene.  相似文献   

6.
Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3‐C3H5)(η5‐C5H5)]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid material. Advanced electron microscopy techniques (including high‐angle annular dark‐field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF‐102 framework. The Pd@COF‐102 hybrid material is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal‐decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal–organic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2–3 through Pd impregnation on COF‐102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.  相似文献   

7.
Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D 1H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625×625×625 μm3) and large imaging matrix (128×128×32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time.  相似文献   

8.
The feasibility of using graphite fluoride intercalation compounds (GFICs) containing metal compounds for manufacturing metal nanoparticles in a graphite or graphite fluoride matrix is shown using the hydrogen reduction of a dicarbon fluoride matrix intercalated with a chloroform solution of palladium acetylacetonate Pd(AA)2. The composite manufactured with a GFIC containing about 10.5 wt % Pd(AA)2 at 80°C is Pd-fluorographite; at 450°C, Pd-graphite is manufactured. The palladium particle size in the composites is about 20–30 nm; the palladium concentration is about 5 and 9 wt %, respectively.  相似文献   

9.
利用可控微乳液法合成粒径19~200 nm,且呈球状分布均匀的聚甲基丙烯酸甲酯/聚(异戊二烯-co-苯乙烯)(PMMA/PIS)核壳纳米粒子,通过水合肼产生原位氢的技术,对合成的PMMA/PIS乳液体系进行直接常压氢化,对影响氢化度的因素、聚合物氢化前后结构、热性能进行了研究.结果显示,聚合物粒径、水合肼及双氧水用量等都是影响聚合物的氢化度的因素.研究发现,氢化以PMMA为核,PIS为壳的核壳结构乳液可以显著提高PIS氢化程度,减少氢化过程中凝胶产生.利用FTIR、~1H-NMR、Na_2S_2O_3滴定法测定了乳液的氢化度.结果表明,当聚合物粒径小于200 nm时,乳液氢化度可达到95%以上,且无凝胶现象产生.GPC结果证明了反应是氢化而非凝胶过程.利用TEM、DLS测试了氢化后乳液的核壳结构和粒径.实验结果显示,PMMA/HPIS为核壳纳米结构.TGA结果显示,当氢化度为98%时,聚合物耐热性提高41°C.  相似文献   

10.
Palladium supported on carbon (Pd/C) catalysts (0.55–0.65 wt.% of Pd) were synthesized by pyrolysis of birch sawdust under inert atmosphere proceeded by prolonged impregnation of sawdust in aqueous solution of palladium nitrate. In some cases, hydrothermal treatment (HT) of the pristine sawdust was conducted to modify the specific surface area of the final carbon material applied as a catalyst support. Based on low-temperature nitrogen adsorption technique, it was postulated that HT of sawdust in the liquid phase increases. while HT in the gaseous phase decreases the specific surface area of Pd/C. The obtained catalysts contained Pd particles (size ranged from 2 to 10 nm) both coated and not coated with carbon shell as evidenced by XPS and TEM techniques. The synthesized Pd/C composites provide high conversion of chlorobenzene and high selectivity in respect to benzene in hydrodechlorination reaction performed in a flow fixed-bed reactor in the presence of H2. XPS data for Pd/C composites tested in the catalytic reaction indicate their high resistance to HCl. A minor part of metal Pd was found to transform into PdCl2 and PdO.  相似文献   

11.
复合氧化物催化剂(Cu)CeO2上硝基苯加氢反应的研究   总被引:1,自引:0,他引:1  
张全信  刘希尧  雷鸣 《催化学报》2002,23(5):400-404
 基于用FT-IR表征H2与硝基苯在催化剂(Cu)CeO2上的吸附和反\r\n应行为,对硝基苯加氢反应进行了研究.结果表明,氢在催化剂表面的\r\n吸附主要为解离吸附,硝基苯的吸附也主要为化学吸附;两种吸附物种\r\n在催化剂上进行表面反应生成易脱附的苯胺,避免了产物与反应物间的\r\n竞争吸附,有利于反应物完全转化.在(Cu)CeO2催化剂上,硝基苯加\r\n氢反应机理为朗格缪尔-欣谢伍德型,即表面反应为控制步骤.  相似文献   

12.
Selectivity of product formation has been tested in hydrogenation of acetylene over 0.3 wt.% Pd/-alumina and 0.5 wt.% Pd/TiO2catalysts. Non-steady-state regime of catalyst operation was tested in pulse-flow experiments. Significant carbon poisoning appears to be a necessaryrequisite for selective formation of ethylene. The effect of hydrogen and acetylene partial pressure has been tested on the selectivity of C4products. At 273–298 K the catalysts showed 26–35% selectivity for C4 hydrocarbons and <2.5% for ethane production at conversionsof 30–40%. Deuterium distribution in ethylene and 1,3-butadiene and the deuterium content of the surface hydrogen pool have been compared and mechanismof diene formation has been discussed.  相似文献   

13.
Onion-like mesoporous carbon vesicle (MCV) with multilayer lamellar structure was synthesized by a simply aqueous emulsion co-assembly approach. Palladium (Pd) nanoparticles were deposited on the MCV matrix (Pd/MCV) by chemical reduction of H2PdCl4 with NaBH4 in aqueous media. Pd(X)/MCV (X wt.% indicates the Pd loading amount) nanocomposites with different Pd loading amount were obtained by adjusting the ratio of precursors. The particular structure of the MCV results in efficient mass transport and the onion-like layers of MCV allows for the obtainment of highly dispersed Pd nanoparticles. The introduction of Pd nanoparticles on the MCV matrix facilitates hydrazine oxidation at more negative potential and delivers higher oxidation current in comparison with MCV. A linear range from 2.0 × 10−8 to 7.1 × 10−5 M and a low detection limit of 14.9 nM for hydrazine are obtained at Pd(25)/MCV nanocomposite modified glassy carbon (GC) electrode. A nonenzymatic amperometric sensor for hydrogen peroxide based on the Pd(25)/MCV nanocomposite modified GC electrode is also developed. Compared with MCV modified GC electrode, the Pd(25)/MCV nanocomposite modified GC electrode displays enhanced amperometric responses towards hydrogen peroxide and gives a linear range from 1.0 × 10−7 to 6.1 × 10−3 M. The Pd(25)/MCV nanocomposite modified GC electrode achieves 95% of the steady-current for hydrogen peroxide within 1 s. The combination of the unique properties of Pd nanoparticles and the porous mesostructure of MCV matrix guarantees the improved analytical performance for hydrazine and hydrogen peroxide.  相似文献   

14.
The properties of supported non‐noble metal particles with a size of less than 1 nm are unknown because their synthesis is a challenge. A strategy has now been created to immobilize ultrafine non‐noble metal particles on supports using metal–organic frameworks (MOFs) as metal precursors. Ni/SiO2 and Co/SiO2 catalysts were synthesized with an average metal particle size of 0.9 nm. The metal nanoparticles were immobilized uniformly on the support with a metal loading of about 20 wt %. Interestingly, the ultrafine non‐noble metal particles exhibited very high activity for liquid‐phase hydrogenation of benzene to cyclohexane even at 80 °C, while Ni/SiO2 with larger Ni particles fabricated by a conventional method was not active under the same conditions.  相似文献   

15.
Monodisperse palladium phosphide nanoparticles (Pd–P NPs) with a smallest size ever reported of 3.9 nm were fabricated using cheap and stable triphenylphosphine as phosphorous source. After the deposition and calcination at 300 °C and 400 °C, the resulting Pd–P NPs increased in size to 4.0 nm and 4.8 nm, respectively. Notably, the latter NPs probably crystallized with a single phase of Pd3P0.95, which acted as a highly active catalyst in semi‐ and stereoselective hydrogenation of alkynes. X‐ray photoelectron spectroscopy analysis determined a positive shift of binding energy for Pd(3d) in Pd–P NPs compared to that in Pd on carbon. It indicated the electron flow from metal to phosphorus and the larger electron deficiency of Pd in Pd–P NPs, which suppressed palladium hydride formation and subsequently increased the selectivity. Thus, this result may also indicate the applications of Pd–P and other metal–P NPs in various selective hydrogenation reactions.  相似文献   

16.
The diene‐based polymer nanoparticles represented by poly(butadiene‐co‐acrylonitrile) were prepared in the semibatch emulsion polymerization system using Gemini surfactant (GS) trimethylene‐1,3‐bis(dodecyldimethylammonium bromide) as the emulsifier. The nanoparticles within the range of 17–54 nm were achieved with narrow molecular weight and particle size distributions. A spherical morphology was observed for the produced nanoparticles. The effects of GS concentration on the particle size, molecular weight, polymerization conversion and solid content, and composition of copolymer were investigated. The semibatch process using monomeric and conventional surfactant sodium dodecyl sulfate (SDS) was compared. At the second stage of this study, the prepared unsaturated nanoparticles were employed as the substrates for the latex hydrogenation in the presence of Wilkinson's catalyst, that is, RhCl(P(C6H5)3)3. The effects of the particle size and catalyst concentration on the latex hydrogenation rate were investigated. The particle size is found to have a significant effect on the reaction rate. When the 17‐nm nanoparticles were used as the substrates, a high conversion of 95 mol % was obtained within 18 h using only 0.1 wt % RhCl(P(C6H5)3)3. The latex hydrogenation process was completely free of organic solvents. The present synthesis and following “green” hydrogenation process can be extended to latices made from semibatch emulsion containing other diene‐based polymers. This study shows great promise for decreasing the demanded quantity of expensive catalyst and eliminating the organic solvent in the hydrogenation process. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Pd/Sibunit and Pd–M/Sibunit (M = Ga, Zn, or Ag) catalysts have been synthesized, and their catalytic properties in liquid-phase acetylene hydrogenation have been investigated. Doping of the palladium catalyst with a metal M leads to the formation of the Pd2Ga, PdZn, or Pd0.46Ag0.54 bimetallic compound. The bimetallic particles are much smaller (1.6–2.0 nm) than the monometallic palladium particles (4.0 nm). Doping with zinc raises the ethylene selectivity by 25% without affecting the activity of the catalyst. Specific features of the effect of each of the dopants on palladium are reported.  相似文献   

18.
Two types of Pd nanoparticle catalysts were prepared having 2–4 nm particle size using silica gel and porous polymer beads as solid supports. 2‐Pyridinecarboxaldehyde ligand was anchored on commercially available 3‐aminopropyl‐functionalized silica gel followed by Pd metal dispersion. Bead‐shaped cross‐linked poly(4‐vinylpyridine‐co‐styrene) gel was prepared by an emulsifier‐free emulsion polymerization of 4‐vinylpyridine, styrene and divinylbenzene in the presence of ammonium persulfate and subsequently dispersing the Pd metal on the synthesized polymer. These catalysts were characterized by SEM, TEM and ICP techiniques with respect to appearance, size and possible leaching out, respectively. Furthermore, the reactivity of these catalysts was tested on hydrogenation of various α,β‐unsaturated carbonyl compounds using aqueous solvent under a hydrogen balloon (1 atm). The results showed that the Pd dispersed on silica was a more efficient catalyst than Pd dispersed on polymer and the former could be recycled more than 10 times without considerable loss in activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The tetrahedral hydridic clusters H2Ru4(CO)13 (1), H2FeRu3(CO)13 (2), and HRuCo3(CO)12 (3) were supported on Chromosorb P and activated under dihydrogen flow. The resulting metal particles are active in the hydrogenation of pentenes, cyclic monoenenes and dienes, benzene, and toluene; these catalysts are effective under mild conditions and with a low metal loading. Experiments under dinitrogen showed that complex hydrogenation-dehydrogenation processes occur, as already observed for the same clusters during the homogeneous hydrogenation of cyclohexadienes. After the gas-chromatographic catalytic runs with cluster 1 as precursor, TEM microscopy showed the presence of very small supported metal particles (mean size 7.5 nm). The decomposition of cluster 1 to metal particles upon thermal treatment on Aerosil under vacuum or under dihydrogen was followed by means of IR spectroscopy; this catalyst hydrogenates benzene at room temperature with 100% conversion in a very short time (calculated activity was about 3200 TOFs).  相似文献   

20.
The liquid-phase hydrogenation of pinane hydroperoxide (PHP) to pinanol on a Pd/C catalyst at 20–80°C and hydrogen pressures of 1–11 atm was studied. It was found that the rate of hydrogenation decreased with PHP concentration. The rate of PHP hydrogenation dramatically increased as the pressure of hydrogen was increased in a range of 2.5–3 atm. A mechanism was proposed for the hydrogenation of PHP. According to this mechanism, the step of hydrogen activation (homolytic or heterolytic addition) depends on the redox properties of the catalyst surface (the ratio between adsorbed PHP species and H2). It was found that pinanol can be prepared with high selectivity by the hydrogenation of PHP on a Pd/C catalyst under mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号