首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By taking advantage of the model-independent nuclear parton distributions, the structure functions xF3(x, Q^2) are calculated, in comparison with the experimental data from CCFR neutrino-nuclei charge current deep inelastic scattering. It is shown that shadowing and anti-shadowing effects occur in valence quark distributions for small and medium x regions, respectively. It is suggested that the neutrino experimental data should be employed in the future for pinning down the nuclear patton distributions.  相似文献   

2.
Perturbative quantum chromodynamics (pQCD) predicts that the small-x gluons in a hadron wavefunction should form a color glass condensate (CGC), characterized by a saturation scale Qs(x,A), which is energy and atomic number dependent. In this paper, we study the predictions of CGC physics for electron-ion collisions at high energies. We consider that the nucleus at high energies acts as an amplifier of the physics of high parton densities and estimate the nuclear structure function F2A(x,Q2), as well as the longitudinal and charm contributions, using a generalization for nuclear targets of the Iancu–Itakura–Munier model that describes the ep HERA data quite well. Moreover, we investigate the behavior of the logarithmic slopes of the total and longitudinal structure functions in the kinematical region of the future electron-ion collider eRHIC.  相似文献   

3.
The QCD factorization theorem for diffractive processes in DIS is used to derive formulae for the leading twist contribution to the nuclear shadowing of parton distributions in the low thickness limit (due to the coherent projectile (photon) interactions with two nucleons). Based on the current analyzes of diffraction at HERA we find that the average strength of the interactions which govern diffraction in the gluon sector at x≤ 10−3, Q 0= 2 GeV is ∼50mb. This is three times larger than in the quark sector and suggests that applicability of DGLAP approximation requires significantly larger Q 0 in the gluon sector. We use this information on diffraction to estimate the higher order shadowing terms due to the photon interactions with N≥ 3 nucleons which are important for the scattering of heavy nuclei and to calculate nuclear shadowing and Q 2 dependence of gluon densities. For the heavy nuclei the amount of the gluon shadowing: G A(x,Q 0 2) /AG N(x,Q 0 2)|x ≤ 10−3∼ 0.25–0.4 is sensitive to the probability of the small size configurations within wave function of the gluon “partonometer” at the Q 0 scale. At this scale for A∼ 200 the nonperturbative contribution to the gluon density is reduced by a factor of 4–5 at x≤ 10−3 unmasking PQCD physics in the gluon distribution of heavy nuclei. We point out that the shadowing of this magnitude would strongly modify the first stage of the heavy ion collisions at the LHC energies, and also would lead to large color opacity effects in eA collisions at HERA energies. In particular, the leading twist contribution to the cross section of the coherent J/ψ production off A≥ 12 nuclei at s −2≥ 70 GeV is strongly reduced as compared to the naive color transparency expectations. The Gribov black body limit for F 2A(x,Q 2) is extended to the case of the gluon distributions in nuclei and shown to be relevant for the HERA kinematics of eA collisions. Properties of the final states are also briefly discussed. Received: 12 March 1999  相似文献   

4.
5.
6.
Electron-proton deep inelastic scattering is treated as the incoherent scattering of electrons by bound Dirac partons in the proton rest frame. An approximate bound state wave function is used for the initial parton, while the final parton is considered free. A good fit is obtained to the structure function F1(x,Q2) in the range x > 0.15, Q2 > 2 GeV. The subsequent prediction for F2(x,Q2) is not as good, indicating a small additional contribution by longitudinal photons for W < 2.5 GeV. The parton momentum distribution is found to contain transverse momentum of 400–600 MeV, increasing with x.  相似文献   

7.
The properties of deep inelastic scattering at high energies, as well as results of fitting of experimental data on structure functions, obtained by BCDMS, SLAC, NMC, and BFP collaborations in fixed target experiments, with the aim of determining the strong coupling constant, the shape of parton distributions, and power corrections to F 2(x, Q 2), are presented.  相似文献   

8.
M Hirai  S Kumano  M Miyama 《Pramana》2001,57(2-3):445-457
Optimum nuclear parton distributions are obtained by analysing available experimental data on electron and muon deep inelastic scattering (DIS). The distributions are given at Q 2=1 GeV2 with a number of parameters, which are determined by a X 2 analysis of the data. Valencequark distributions are relatively well determined at medium x, but they are slightly dependent on the assumed parametrization form particularly at small x. Although antiquark distributions are shadowed at small x, their behavior is not obvious at medium x from the F 2 data. The gluon distributions could not be restricted well by the inclusive DIS data; however, the analysis tends to support the gluon shadowing at small x. We provide analytical expressions and computer subroutines for calculating the nuclear parton distributions, so that other researchers could use them for applications to other high-energy nuclear reactions.  相似文献   

9.
In this paper, we investigate the saturation physics in diffractive deep inelastic electron-ion scattering. We estimate the energy and nuclear dependence of the ratio σdifftot and predict the x and β behavior of the nuclear diffractive structure function F2,AD(3)(Q2,β,x). Moreover, we analyze the ratio RdiffA1,A2(Q2,β,x)=F2,A1D(3)/F2,A2D(3), which probes the nuclear dependence of the structure of the pomeron. We show that saturation physics predicts that approximately 37% of the events observed at eRHIC should be diffractive.  相似文献   

10.
Understanding the effects of cold nuclear matter on J/ψ production is a key requirement for interpreting the J/ψ suppression reported in heavy-ion collisions. Based on a Glauber model, the J/ψ–nucleon inelastic cross section is determined from a statistical analysis of the J/ψ world data on nuclear targets. The global fit of all data gives σJ/ψN = 3.4 ± 0.2 mb, significantly smaller than previous estimates, yet the χ2 of the fit is pretty large, χ2/ndf=1.5. A similar value, σJ/ψN = 3.5 ± 0.2 ± 1.7 mb, is obtained when the De Florian–Sassot modifications of the nuclear parton densities are included in the analysis, although we emphasise that the present uncertainties on gluon (anti-) shadowing do not allow for a precise determination of σJ/ψN. Finally, the possible energy dependence of the J/ψ–nucleon inelastic cross section is investigated within this framework. No significant energy dependence of the J/ψ–N interaction is observed. PACS  25.75.-q; 14.40.Gx; 24.85.+p  相似文献   

11.
The CHORUS experiment, designed to search for νμ→ντ oscillations, consists of a nuclear emulsion target and electronic detectors. In this paper, results on the production of charged particles in a small sample of charged-current neutrino– and anti-neutrino–nucleus interactions at high energy are presented. For each event, the emission angle and the ionization features of the charged particles produced in the interaction are recorded, while the standard kinematic variables are reconstructed using the electronic detectors. The average multiplicities for charged tracks, the pseudo-rapidity distributions, the dispersion in the multiplicity of charged particles and the KNO scaling are studied in different kinematical regions. A study of quasi-elastic topologies performed for the first time in nuclear emulsions is also reported. The results are presented in a form suitable for use in the validation of Monte Carlo generators of neutrino–nucleus interactions.  相似文献   

12.
13.
We present a detailed comparison of high statistics measurements of the structure functionF 2(x, Q 2) from deep inelastic scattering of charged leptons on hydrogen and deuterium targets. It is found that the CERN results from the EMC and BCDMS Collaborations are both compatible with the lowQ 2 electron scattering results from SLAC after an adjustment of the relative normalizations. We discuss the residual discrepancy between EMC and BCDMS which persists after this renormalization and find that the SLAC data are in better agreement with the steeperx dependence of the BCDMS results. A phenomenological parametrization ofF 2(x, Q 2) is given.  相似文献   

14.
15.
We consider deep inelastic scattering off nuclei in the Regge limit within the Glauber–Gribov model. Using unitarized parton distribution functions for the proton, we find sizeable shadowing effects on the nuclear total and longitudinal structure functions, $F_{2}^{A}$ and $F_{L}^{A}$ , in the low-x limit. Extending a fan-diagram analysis for the large-mass region of coherent diffraction off nuclei to high Q 2, we also find significant shadowing effects in this kinematical regime. Finally, we discuss the shortcomings of our approach and possible extensions of the model to other kinematical regimes.  相似文献   

16.
A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-xIP>0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t|<1 GeV2. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5≤Q2≤1600 GeV2, triple differentially in xIP, Q2 and β=x/xIP, where x is the Bjorken scaling variable. At low xIP, the data are consistent with a factorisable xIP dependence, which can be described by the exchange of an effective pomeron trajectory with intercept αIP(0)=1.118±0.008(exp.)+0.029 -0.010(model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e+p→ν̄eXY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q2 at fixed xIP and x or on x at fixed Q2 and β.  相似文献   

17.
We evaluate nuclear shadowing of the total cross section of charm particles production in DIS within the framework of Gribov theory of nuclear shadowing generalized to account for the QCD evolution. We use as an input the recent QCD Pomeron parton density analysis of the HERA diffractive data. Assuming that the QCD factorization theorem is applicable to the charm production off nuclei we also calculate shadowing of the gluon densities in nuclei and find it sufficiently large for heavy nuclei: GA~200(x,Q2)/AGN(x,Q2) ~ 0.45 m 0.5 · (A/200)т.15 for x ~ 10х1ц, Q2 ~ 20 1 40 GeV2 to influence significantly the physics of heavy ion collisions at LHC. We evaluate also suppression of minijet and hidden charm production in the central AA collisions. We also discuss some properties of the final states for %*A processes dominated by the scattering off small x gluons like the high pt jet and charm production.  相似文献   

18.
We investigate shadowing effects in deep-inelastic scattering from nuclei at small valuesx < 0.1 of the Bjorken variable. Unifying aspects of generalized vector meson dominance and color transparency we first develop a model for deep-inelastic scattering from free nucleons at smallx. In application to nuclear targets we find that the coherent interaction of quark-antiquark fluctuations with nucleons in a nucleus leads to the observed shadowing atx < 0.1. We compare our results with most of the recent data for a large variety of nuclei and examine in particular the Q2 dependence of the shadowing effect. While the coherent interaction of low mass vector mesons causes a major part of the shadowing observed in the Q2 range of current experiments, the coherent scattering of continuum quark-antiquark pairs is also important and guarantees a very weak overall Q2 dependence of the effect. We also discuss shadowing in deuterium and its implications for the quark flavor structure of nucleons. Finally we comment on shadowing effects in high-energy photon-nucleus reactions with real photons.  相似文献   

19.
R. Fiore  V. R. Zoller 《JETP Letters》2008,87(10):524-530
Due to the weak-current nonconservation, the diffractive excitation of the charm and strangeness dominates the longitudinal structure function F L (x, Q 2) of a neutrino DIS at a small Bjorken x. Quantitative predictions based on the color dipole BFKL approach are given for this effect in the kinematical range of the CCFR/NuTeV experiment. The relevance of our findings to the experimental tests of PCAC is discussed. The text was submitted by the authors in English.  相似文献   

20.
We discuss solutions of the renormalization group equations for a Yukawa field theory. For an increasing effective boson mass we find that the leading terms in the vertex functions in the high-energy region are given by diagrams which contain no internal boson lines. In e+e? annihilation into hadrons we get the parton model formula R(s) = ΣiQi2, whereas in the deep inelastic e?p scattering the simple parton model behaviour is modified by the (in general) non-canonical dimension of the quark field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号