首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A computational method for the evaluation of dispersion and repulsion contributions to the solvation energy is here presented in a formulation which makes use of a continuous distribution of the solvent, without introducing additional assumptions (e.g., local isotropy in the solvent distribution). The analysis is addressed to compare the relative importance of the various components of the dispersion energy (n = 6, 8, 10) and of the repulsion term, to compare several molecular indicators (molecular surface and volume, number of electrons) which may be put in relation to the dispersion-repulsion energy, and to define simplified computational strategies. The numerical examples refer to saturated hydrocarbons in water, treated with the homogeneous approximation of the distribution function which for this type of solution appears to be acceptable.  相似文献   

2.
This is the first part of a study of the local field effects on (non)linear optical susceptibilities of solutions of para-nitroaniline (pNA) in three different solvents, cyclohexane (CH), 1,4-dioxane (DI), and tetrahydrofuran (THF), using a discrete molecular representation of the condensed phase. To account for dipolar and quadrupolar effects, the latter of which are especially important for DI solution, all the electric properties necessary to compute the local fields and local field gradients in quadrupolar approximation as well as the dipolar hyperpolarizabilities for the four molecules are computed, including frequency dispersion and vibrational contributions to the dipolar properties. The convergence of the perturbation treatment for the pure vibrational (PV) contributions is examined by comparison of the values obtained at the lowest order with those of partially computed second order in mechanical and electrical anharmonicity. For pNA, for which previous computations of the hyperpolarizabilities have generally found poor agreement with experimental results, a thorough investigation of the effects of solvent-induced geometry changes, dynamic and static correlation, frequency dispersion, and classical thermal averaging over the torsional modes of the substituent groups and the inversion mode of the amino group on the dipolar properties is carried out. Computations using self-consistent continuum reaction field models show that the amino group is substantially less pyramidalized in polar solvents than in the gas phase. With all the effects taken into account, reasonable agreement with the experimental electric-field induced second harmonic generation (EFISH) result on pNA vapor of Kaatz, Donley, and Shelton is obtained.  相似文献   

3.
A recently developed self-consistent crystal field (SCCF ) method is applied to two suggested crystal structures of solid hydrogen fluoride, polar and nonpolar, respectively. Constrained geometry optimizations are performed and the results are compared with experiment and previous theoretical studies. Comparisons are also made with a previous SCCF study on hydrogen cyanide. The Pauli repulsion, dispersion, and “classical” crystal field contributions to the lattice energy are calculated. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
5.
The energy of exchange repulsion between two closed-shell systems described by determinantal wave functions has been represented as a sum of contributions arising from the interaction of two, three and four orbitals at a time. These contributions have been calculated for the interaction of two neon atoms. It has been found that in the van der Waals minimum region the two-orbital components are of secondary importance and that about 90% of the total exchange energy originates from the three-orbital interactions ofL-shell electrons. The four-orbital as well as the double-exchange terms have been found negligible. The approximate algorithms for evaluation of the exchange repulsion energy have been tested and discussed.This work was partly supported by the Polish Academy of Sciences within the project MR-I.9.  相似文献   

6.
7.
The interaction between charged colloidal particles is mediated by their electric double layers. Given that pairs of like-charged particles experience a repulsion, why do some dilute colloidal dispersions become unstable and condense at low ionic strengths? This puzzling paradox appears to have been largely resolved over the past year by a careful analysis of all the contributions to the thermodynamic potential of the dispersion. Condensation can be predicted using the traditional pair repulsion of the Poisson–Boltzmann theory without invoking any long-range attractions in the pair potential. However, it has emerged that one has to go beyond the Poisson–Boltzmann theory to account for the instability that occurs in confined colloidal dispersions. Other recent advances in the ubiquitous Poisson–Boltzmann theory have included effective surface charge approaches in calculating the electrokinetic zeta potential, and the modelling of charge regulation in colloidal systems.  相似文献   

8.
The conformational preferences of N-acetyl-N'-methyl-alpha-methyl-beta-L-aspartamide, which is the model compound for helical poly(beta-L-aspartate)s, have been determined by ab initio SCF-MO computations. Two driving patterns have been found for the existing 13 minimum energy conformations: (i) intramolecular hydrogen bonding interactions of both amide-amide and amide-ester type; and (ii) repulsive interactions between the four oxygen atoms contained in the molecule. Self-consistent reaction-field (SCRF) calculations based on the method proposed by Miertus, Scrocco, and Tomasi have been performed in order to evaluate the effect of the solvent on the conformational preferences of the compound subject of study. Water and carbon tetrachloride were the solvents chosen for this purpose, and results have been discussed and interpreted on the basis of their electronic structures. The conclusions drawn from this study are of assistance to understand some features of the conformational transitions experimentally found in poly(beta-L-aspartate)s.  相似文献   

9.
Stochastic and deterministic simulations of dispersion in cylindrical channels on the Poiseuille flow have been presented. The random walk (stochastic) and the uniform dispersion (deterministic) models have been used for computations of flow injection analysis responses. These methods coupled with the genetic algorithm and the Levenberg–Marquardt optimization methods, respectively, have been applied for determination of diffusion coefficients. The diffusion coefficients of fluorescein sodium, potassium hexacyanoferrate and potassium dichromate have been determined by means of the presented methods and FIA responses that are available in literature. The best-fit results agree with each other and with experimental data thus validating both presented approaches.  相似文献   

10.
This review provides a comprehensive evaluation of solidified floating organic drop microextraction (SFODME) procedures for metal ions preconcentration and their contributions to green chemistry. In this article we focused on the modifications that have been performed in the recent years to improve this environmentally friendly procedure. Among the most important of these modifications are the inclusion of ultrasonic energy, vortex and air agitation to enhance the dispersion process. The article also discussed new challenges in the procedure by using more ecofriendly solvents as extractants such as ionic liquids, deep eutectic. and supramolecular solvents. The coupling of SFODME with solid phase extraction increases selectivity and efficiency of the preconcentration procedure.  相似文献   

11.
Crystallographic and computational studies suggest the occurrence of favourable interactions between polarizable arenes and halogen atoms. However, the systematic experimental quantification of halogen⋅⋅⋅arene interactions in solution has been hindered by the large variance in the steric demands of the halogens. Here we have synthesized molecular balances to quantify halogen⋅⋅⋅arene contacts in 17 solvents and solvent mixtures using 1H NMR spectroscopy. Calculations indicate that favourable halogen⋅⋅⋅arene interactions arise from London dispersion in the gas phase. In contrast, comparison of our experimental measurements with partitioned SAPT0 energies indicate that dispersion is sufficiently attenuated by the solvent that the halogen⋅⋅⋅arene interaction trend was instead aligned with increasing exchange repulsion as the halogen increased in size (ΔGX⋅⋅⋅Ph=0 to +1.5 kJ mol−1). Halogen⋅⋅⋅arene contacts were slightly less disfavoured in solvents with higher solvophobicities and lower polarizabilities, but strikingly, were always less favoured than CH3⋅⋅⋅arene contacts (ΔGMe⋅⋅⋅Ph=0 to −1.4 kJ mol−1).  相似文献   

12.
Density functional theory calculations have been performed to investigate the copper-catalyzed borocyanation of 1-aryl-1,3-butadienes.The computations show that the regio-and enantioselectivity is determined by the borocupration step.The π-electron withdrawing aryl group at the C' atom makes the C4 atom more electrophilic than the other carbon atoms,which together with the steric repulsion around the forming C-B bond,re sults in the experimentally observed exclusive 4,3-regioselectivity.The origins of the enantioselectivity were attributed to the steric effect and π-π stacking interaction between the butadiene moiety and the ligand.  相似文献   

13.
The influence of solvation on the conformational isomerism of calix[4]arene and p-tert-butylcalix[4]arene has been investigated by using the continuum model reported by Miertus, Scrocco, and Tomasi (MST). The quantum mechanical (QM) and semiclassical (SC) formalisms of the MST model have been considered for two different solvents (chloroform and water). The suitability of the QM-MST and SC-MST methods has been examined by comparison with previous results derived from classical molecular dynamics (MD) simulations with explicit solvent molecules. The application of the continuum model to the solute configurations generated by using in vacuo classical MD simulations provides a fast strategy to evaluate the effects of the solvent on the conformational preferences of calixarenes. These encouraging results allow us to propose the use of continuum models to solutes with complex molecular structures, which are traditionally studied by MD simulations.  相似文献   

14.
Based on hard-sphere limit of binary mixtures with different molecular size of components a theory has been developed for calculating activities of solvents in polymer/solvent mixtures. The theory considers various chain configurations for polymer molecules, varying from extended chain to the coiled chain. According to this theory the activity of solvent can be calculated from molecular weights (MWs) and densities as the only input data. The only adjustable parameter in the calculations, is the hard-sphere diameter of polymer, which provides useful criteria for the judgement on the chain configuration of polymer.The activity calculations have been performed for seven binary mixtures of polymer/solvent and compared with experimental data at various temperatures and for a varying range of MWs of polymers.The solvents in the mixtures were both of polar and nonpolar natures. The activity calculations for the same systems were performed by the well-known Flory-Huggins theory. Comparing the results of calculations with those of Flory-Huggins theory indicates that, the proposed theory is able to predict the activities of the solvent with good accuracy.The radius of gyration, excluded volume and interaction parameter for polymer chain have been calculated using the parameter obtained in the new theory. The calculated interaction parameter in the new theory, is interpreted in terms of attraction, repulsion and interchange energy of polymer and solvent in the mixture.  相似文献   

15.
16.
17.
The density functional version of symmetry‐adapted perturbation theory, SAPT(DFT), is a computationally efficient method for calculating intermolecular interaction energies. We evaluate its accuracy by comparison with experimentally determined noble gas interaction potentials and sublimation enthalpies, most of which have not been previously calculated using this method. In order to compare the results with wavefunction methods, we also calculate these quantities using MP2 and, for noble gas dimers, using CCSD(T). For the crystal lattice energy calculations, we include corrections to the dispersion, electrostatic, and induction energies that account for the finite interaction distance cutoff and higher‐order induction contributions. Overall, the energy values extrapolated to the complete basis set limit show that SAPT(DFT) achieves significantly better agreement with experiment than MP2.  相似文献   

18.
Previously, we have introduced the linear scaling coupled cluster (CC) divide-expand-consolidate (DEC) method, using an occupied space partitioning of the standard correlation energy. In this article, we show that the correlation energy may alternatively be expressed using a virtual space partitioning, and that the Lagrangian correlation energy may be partitioned using elements from both the occupied and virtual partitioning schemes. The partitionings of the correlation energy leads to atomic site and pair interaction energies which are term-wise invariant with respect to an orthogonal transformation among the occupied or the virtual orbitals. Evaluating the atomic site and pair interaction energies using local orbitals leads to a linear scaling algorithm and a distinction between Coulomb hole and dispersion energy contributions to the correlation energy. Further, a detailed error analysis is performed illustrating the error control imposed on all components of the energy by the chosen energy threshold. This error control is ultimately used to show how to reduce the computational cost for evaluating dispersion energy contributions in DEC.  相似文献   

19.
A series of energy calculations have been carried out in order to describe the epitaxial crystallization of polyethylene from solution in terms of molecular interactions. The total energy has been computed as the sum of electrostatic, dispersion, and repulsion contributions. The potential energy associated with a section of a planar-zigzag polyethylene chain has been determined for various orientations and positions above three different planar alkali halide substrates. Inspection of the energy surfaces as a function of the spatial degrees of freedom reveals that the minimum energy orientation of the chain is that for which it is parallel to the substrate [(001) cleavage plane] and aligned in the 〈110〉 direction on the surface, a result in accordance with available experimental evidence. Specifically, the chain preference is to position itself along rows of positive ions, whereas alignment along rows of negative charge appears energetically unfavorable. The mode of chain orientation is virtually independent of lattice matching criteria. Dispersionrepulsive forces have been found to be most sensitive to orientation and greater in magnitude than the electrostatic forces.  相似文献   

20.
Density functional calculations have been performed on M2X6 complexes (where M = U, W, and Mo and X = Cl, F, OH, NH2, and CH3) to investigate general aspects of their electronic structures and explore the similarities and differences in metal-metal bonding between f-block and d-block elements. A detailed analysis of the metal-metal interactions has been conducted using molecular orbital theory and energy decomposition methods. Multiple (sigma and pi) bonding is predicted for all species investigated, with predominant f-f and d-d metal orbital character, respectively, for U and W or Mo complexes. The energy decomposition analysis involves contributions from orbital interactions (mixing of occupied and unoccupied orbitals), electrostatic effects (Coulombic attraction and repulsion), and Pauli repulsion (associated with four-electron two-orbital interactions). The general results suggest that the overall metal-metal interaction is stronger in the Mo and W species, relative to the U analogues, as a consequence of a significantly less destabilizing contribution from the combined Pauli and electrostatic ("pre-relaxation") effects. Although the orbital-mixing ("post-relaxation") contribution to the total bonding energy is predicted to have a larger magnitude in the U complexes, this is not sufficiently strong to compensate for the comparatively greater destabilization that originates from the Pauli-plus-electrostatic effects. Of the pre-relaxation terms, the Pauli repulsion is comparable in analogous U and d-block compounds, contrary to the electrostatic term, which is (much) less favorable in the U systems than in the W and Mo systems. This generally weak electrostatic stabilization accounts for the large pre-relaxation destabilization in the U complexes and, ultimately, for the relative weakness of the U-U bonds. The origin of the small electrostatic term in the U compounds is traced primarily to MX(3) fragment overlap effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号