首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutral oxorhenium(V) complexes with thiosemicarbazones derived from 2‐pyridine formamide, HL1, are formed when [ReOCl3(PPh3)2] reacts with equimolar amounts of the ligands. Reduction of the metal and the formation of rhenium(III) complexes of the composition [Re(L1)2]+ occurs when an excess of thiosemicarbazones is used and the reaction is performed in boiling toluene for a prolonged period of time. The thiosemicarbazones deprotonate and act as tridentate ligands as has been confirmed by an X‐ray structure of [ReOCl2(L1b)], where HL1b is 2‐pyridineformamide‐N(4)‐ethylthiosemicarbazone and the ligand occupies the equatorial coordination sphere of the complex together with one of the chloro ligands.  相似文献   

2.
We synthesized and characterized a set of new oxorhenium(V) complexes coordinated by various pyrazole containing phenol (L1-L3) and naphthol ligands (L4-L7). Depending on the starting material, we were able to selectively synthesize monosubstituded or disubstituted complexes of the type [ReOBr(2)L(PPh(3))] (1-7; L = L1-L7) and [ReOClL(2)] (L = L1 8; L2 9; L4 10; L6 11), respectively. All complexes are stable to air and moisture, both in solid state as well as in solution. Furthermore, the cationic oxorhenium(V) complex [ReO(L1)(2)(NCMe)](OTf) (8a) was obtained upon chloride abstraction with silver triflate from 8. All new complexes were able to catalyze the epoxidation of cis-cyclooctene in yields up to 64%. The ease of preparation and their tolerance to air and moisture, as well as the simple ligand modifications, make them an interesting class of novel catalysts. An attempted reduction of perchlorate ClO(4)(-) with complex 8 was unsuccessful. Molecular structures of complexes 1, 4, 6, 7, 8, 8a, 10, and 11 were determined by single crystal X-ray diffraction analyses.  相似文献   

3.
Rhenium(V) complexes with 2-amino-4-(methylthio)butanoic acid (methionine, Met) and 2-amino-3-sulfopropionic acid (cysteine, Cys) have been synthesized. Depending on the initial reagent ratio, the resulting complexes contain one or two ligand molecules. On heating the compounds with one amino acid molecule, two hydrogen halide molecules are removed at 128–132°C to form a molecular complex. The composition, structure, and thermal stability of the complexes have been studied by elemental analysis, conductometry, IR spectroscopy, NMR, and mass spectrometry.  相似文献   

4.
A family of oxorhenium(V) complexes of newly designed pyridylthioazophenolate ligands has been synthesized and isolated in pure form. The solid state structure of an organic compound (HL1) has been established by X-ray crystallography. The molecular structure observed in the solid state is that the two molecules of the ligand (HL1) in the asymmetric unit have similar geometries, except for the orientation of the pyridine ring. This series of organic moieties acts as tetradentate monobasic NSNO donor chelators in oxorhenium(V) complexes which has been characterized by elemental analyses, IR, 1H-NMR, UV–Vis. The complexes are 1:1 electrolytes in nature in MeOH solution, the counter anion being ClO 4 . The electrochemical studies of the [ReVO(L)Cl]ClO4 complexes in MeCN using TBAP as supporting electrolyte exhibit quasi-reversible voltammogram showing one-electron couple for [ReVIO(L)Cl]2+−[ReVO(L)Cl]+ in the 1.11–1.29 V vs SCE range.  相似文献   

5.
The reaction of equimolar quantities of trans-[ReOCl3(PPh3)2] and 8-hydroxyquinoline (Hhqn) in benzene led to the isolation of the six-coordinate complex [ReOCl2(hqn)(PPh3)] (1). With 2-pyridine-ethanol (Hhep) the compound [ReOCl2(hep)(PPh3)] (2) was obtained. Both hqn and hep ligands act as monoanionic bidentate N,O-donor chelates. Although the two complexes are very similar, there are some significant differences in certain bond distances and angles in them. Both complexes contain the nearly linear trans O=Re–O axis, with this angle equal to 160.9(2)° and 167.8(1)° in 1 and 2, respectively.  相似文献   

6.

Monooxo complexes of rhenium(V) with 2-aminophenol and some of its derivatives (H2nod), containing the N,O donor-atom set, have been synthesized. Square-pyramidal complexes [ReO(nod)2]? were isolated by reaction with (n-Bu4N) [ReOCl4] in ethanol. In benzene the neutral species [ReOCL(Hnod)2] were obtained. In the presence of hydrochloric acid in ethanol, the anionic complexes (n-Bu4N) [ReOCl3(Hnod)] were produced. Trans-[ReOCl3(PPh3)2] was also reacted with some of the H2nod ligands to yield [ReOCL2(Hnod)(PPh3]. The crystal structure of [ReOCl2(Hmap)(PPh3)] (H2map = 2-aminobenzylalcohol) was determined; crystals are monoclinic, P21/n, with a = 15.065(6), b = 11.253(7), c = 15.850(7) Å, β = 94.27(4)°, U = 2680(2) &Aringsup3; and Z = 4. The structure was solved by the Patterson method and refined by full-matrix least-squares techniques to R = 0.042. The monoanionic Hmap? ligand is coordinated as a bidentate through a neutral amino nitrogen and an anionic alcoholate oxygen atom, with the latter trans to the oxo group.  相似文献   

7.
The reaction of 2-(2'-pyridyl)benzothiazole, [NN], with the ReO(V)(3+) and TcO(V)(3+) cores in the presence of thiophenols, [S] (RC(6)H(4)SH, R = H, 4-CH(3), 4-OCH(3)), as coligands led to the isolation of hexacoordinated complexes of the MO[NN][S](3) type (M = Re, Tc). In all cases, two geometric mer isomers were formed, as evidenced by NMR spectroscopy and confirmed by X-ray crystallography. In both isomers, the coordination geometry about the metal ion is a distorted octahedral defined by the two nitrogen atoms of the bidentate ligand, the three sulfur atoms of the monodentate thiols, and the oxygen atom of the oxo group. The apical positions of the octahedron are occupied by the oxygen of the oxo group and, in one of the isomers, the nitrogen of the pyridyl moiety of 2-(2'-pyridyl)benzothiazole, while, in the second isomer, the imine nitrogen of 2-(2'-pyridyl)benzothiazole. The complexes are stable, neutral, and lipophilic. Complete (1)H and (13)C NMR assignments are reported for all complexes. The synthetic reaction was also successfully transferred at the technetium-99m tracer level by ligand exchange reaction using (99m)Tc-glucoheptonate as precursor in the presence of 2-(2'-pyridyl)benzothiazole and 4-CH(3)C(6)H(4)SH. The structure of the technetium-99m complex was established by high-performance liquid chromatographic comparison with the analogous oxotechnetium and oxorhenium complexes. The 2-(2'-pyridyl)benzothiazole ligand serves as a preliminary model for 2-(4-aminophenyl)benzothiazole, which possesses interesting properties for the development of technetium and rhenium radiopharmaceuticals for tumor imaging and/or radiotherapy as well as in vivo diagnosis of Alzheimer's disease.  相似文献   

8.
The first synthesis and characterization of Cr(V) complexes of non-sulfur-containing amino acids are reported. The reduction of Cr(VI) in methanol in the presence of amino acids glycine, alanine, and 2-amino-2-methylpropanoic acid (alpha-aminoisobutyric acid, Aib) yielded several Cr(V) EPR signals. For the reaction involving glycine, the only Cr(V) EPR signals detected were those of the Cr(V)-intermediate methanol complexes, which were also observed in the absence of amino acids. The reaction involving alanine yielded one Cr(V) signal with a g(iso) value of 1.9754 (a(iso) = 4.88 x 10(-4) cm(-1) and A(iso)(53Cr) = 17.89 x 10(-4) cm(-1)). However, a solid product isolated from the reaction solution was EPR silent and was characterized as a dioxo-bridged dimeric species, [Cr(V)2(mu-O)2(O)2(Ala)2(OCH3)2](2-), by multiple-scattering XAFS analysis and electrospray mass spectrometry. The EPR spectrum of the reduction reaction of Cr(VI) in the presence of Aib showed several different Cr(V) signals. Those observed at lower g(iso) values (1.9765, 1.9806) were assigned to Cr(V)-methanol intermediates, while the relatively broad six-line signal at g(iso) = 2.0058 was assigned as being due to a Cr(V) complex with coupling to a single deprotonated amine group of the amino acid. This was confirmed by simplification of the superhyperfine coupling lines from six to three when the deuterated ligand was substituted in the reaction. The reduction of Cr(VI) with excess alanine or Aib ligands resulted in the formation of tris-chelate Cr(III) complexes, which were analytically identical to complexes formed via Cr(III) synthesis methods. The fac-[Cr(Aib)3] complex was characterized by single-crystal X-ray diffraction.  相似文献   

9.
The respective coordination reactions of trans-[ReOCl3(PPh3)2] with N-[(4-oxo-4H-chromen-3-yl)methylidene]thiophene-2-carbohydrazide (Hchrtc) and N-[1,3-benzothiazol-2-ylmethylidene]thiophene-2-carbohydrazide (Hbztc) afforded two novel oxorhenium(V) complexes, cis-[ReOCl2(chrtc)(PPh3)] (1) and cis-[ReOCl2(bztc)(PPh3)] (2). These metal compounds were elucidated spectroscopically and their solid-state structures determined by single-crystal X-ray diffraction. The redox properties of the metal complexes were probed using cyclic and square wave voltammetry. The DNA interaction capabilities of 1 and 2 were gauged via UV/Vis spectroscopy DNA titrations and gel electrophoresis studies. A correlation is identified between the DNA cleavage observations and the redox potentials of the metal complexes.  相似文献   

10.
We have prepared a series of bis-bidentate complexes of rhenium that mimic the size, shape, and peripheral functionality of steroidal androgens. In a model system, we used 2D NMR and X-ray crystallographic analysis to show that adjacent N-methyl and oxo substitutents adopt an anti configuration during the coordination reaction. We have synthesized a bis-bidentate oxorhenium(V) complex whose structure and peripheral functionality mimic 5alpha-dihydrotestosterone. 2D-NMR analysis indicates that the N-methyl and oxo substituents are driven into the steroidal anti configuration (beta-N-methyl, alpha-oxo) by the beta-orientation of the methyl group equivalent to C-18. Thus, this metal complex provides a remarkable structural and stereochemical mimic of a steroid. Its in vivo stability, however, appears to be limited.  相似文献   

11.
12.
The ionic state of vanadium(V) is studied spectrophotometrically over a wide range of sulfuric acid concentrations from 1.0 to 16.8 mol/l. Existence regions for monomeric and dimeric vanadium(V) complexes are determined. The equilibrium constant of vanadium(V) dimerization in 12 M H2SO4 is determined.  相似文献   

13.
合成和表征了新的三元配合物: [Cu(L-His)(5'-AMP)]Cl2.4H2O,[Cu(L-His)(5'-GMP)]Cl2, [Cu(L-His)(5'-IMP)]Cl2.2H2O,[Cu(l-Lys)2(5'-GMP)]Cl2.6H2O, Na2[Cu(L-Lys)2(5'-GMPH_2)].6H2O,Na2[Cu(L-Lys)2(5'-GTPH_2)].6H2O, Na2[Cu(L-Lys)2(5'-IMPH_2)].10H2O. IR及NMR谱表明, 5'-嘌呤核苷酸以嘌呤碱基上的7-N原子与Cu(II)配位。在5'-嘌呤核苷酸形成的配合物中, 磷酸根不参与配位, 但是Na2.5'-GMPH-2和Na.5'-GTPH-2的磷酸根参与配位, 而Na2.5'-IMPH-2的磷酸根不参与配位。  相似文献   

14.
Wang Y  Espenson JH 《Organic letters》2000,2(22):3525-3526
The compound CH(3)Re(O)(SR)(2)PPh(3), where (SR)(2) represents the dianion of 2-(mercaptomethyl)thiophenol, catalyzes the rapid and efficient transfer of an oxygen atom from a wide range of ring-substituted pyridine N-oxides to triphenylphosphine, yielding the pyridines in high yield.  相似文献   

15.

5,12-dioxa-7,14-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,8-diene (N4L) reacts with the starting oxorhenium(V) complex, H2[ReOCl5], to yield either mononuclear [ReO(N4L)(OH2)]Cl3, or dinuclear [Re2O3(N4L)2]Cl4·2H2O depending on the concentration of hydrochloric acid in rhenium complex. The reaction of (N4L) mixed with KSCN or PPh3 with the oxorhenium(V) complex in 6N HCl, yielded the mononuclear complexes [ReO(N4L)(SCN)]Cl2·H2O and [ReO(N4L)(PPh3)]Cl3·H2O respectively. Both complexes have an octahedral configuration. These complexes decompose through several isolable, as well as non-isolable, intermediates during heating. [Re2O3(N4L\)2] (N4L\ = dianionic tetradentate ions), [ReO(N4L)Cl]Cl2 and [ReO(N4L\)(SCN)], were synthesized pyrolytically in the solid state from the corresponding rhenium(V) complexes. All have octahedral configurations. The ligand (N4L) behaves in these complexes either as a neutral tetradentate or dianionic tetradentate ligand towards the oxorhenium ions. All complexes and the corresponding thermal products were isolated and their structures were elucidated by elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy.  相似文献   

16.

The oxo-bridged dinuclear complexes [(μ-O){ReOCl2(L)}2] [L = 2-(1-ethylaminomethyl)-1-methylimidazole (eami); 2-(1-methylaminomethyl)-1-methylimidazole (mami); 2-(1-ethylthiomethyl)-1-methylimidazole (etmi)] were prepared by reaction of trans-[ReOCl3(PPh3)2] with L in acetone. X-ray crystallographic studies of the eami and etmi complexes show that these ligands coordinate in a bidentate manner, and that the cis, cis-N2Cl2 and cis, cis-NSCl2 equatorial planes are nearly orthogonal to the O=Re-O-Re=O backbone.  相似文献   

17.
2-Benzoxazolethione reacts with the parent oxorhenium(V) complex, H2[ReOCl5], to yield either mononuclear or dinuclear complexes depending on the metal: ligand molar ratio and the concentration of hydrochloric acid containing the parent rhenium complex. The mononuclear complexs [ReOLCl(OH2)3]Cl2, [ReOL2(OH2)3]Cl3 and [ReOLCl3(OH2)]; and dinuclear complexes [Re2O3(μ-L)2Cl4]·2H2O and [Re2O2(μ-L)L2Cl6]-2H2O were obtained. Both types of complexes have octahedral configurations. The mononuclear complexes prepared in 6N HCl or in 9N HCl undergo irreversible one-step solid-phase thermochromism transformation, thus, the colour of complexes changed from green to brown, black or bluish-green, upon heating. For the complexes obtained in 6N HCl, this step corresponds to structural changes due to the formation of other types of dinuclear complexes, while the mononuclear complex obtained in 9N HCl changes to another mononuclear complex with different coordination sites. On the other hand, the colour of the dinuclear complexes prepared in 2N HCl changed from brown to black, upon heating, in one step solid-phase thermochromism transformation corresponding to a change in the mode of coordination sites of the organic ligand. All thermal products obtained have octahedral configurations. The ligand behaves in these complexes either as a neutral, mono-, bidentate or monoanionic bidentate towards the oxorhenium ions. All complexes and the corresponding thermal products were isolated and their structures were elucidated by elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments, 1H NMR and TG-DTA measurements as well as by mass spectroscopy.  相似文献   

18.
New heteronuclear complexes containing oxorhenium(V), Cu(II), Ni(II), Fe(III), UO2(VI) and Th(IV) ions were prepared by the reaction of the complex ligand, [ReO(H4L)Cl]Cl2, where H4L = 8,17-dimethyl-6,15-dioxo-5,7,14,16-tetrahydrodibenzo[a,h][14]annulene-2,11-dicarboxylic acid, with the previous transition and actinide salts. Three heteronuclear Cu(II) complexes were isolated depending on the ratio of [ReO(H4L)Cl]Cl2?:?Cu(II) ion. When the ratios were 1?:?0.5, 1?:?1 and 1?:?2, the heteronuclear complexes {[ReO(H3L)Cl]2CuCl2(OH2)2}SO4 · H2O (I), [ReO(H3L)Cl2Cu(OH2)2(SO4)] (II) and {ReO(H2L)Cl[Cu(OH2)3 SO4]2} (III) were obtained, respectively. Heteronuclear complexes of the other metal cations were obtained by mixing [ReO(H4L)Cl]Cl2 with the metal salt in the ratio 1?:?1 to obtain the heteronuclear complexes [ReO(H3L)Cl2Ni(OH2)2](NO3)2 (IV), [ReO(H3L)Cl3Fe(OH2)3](NO3)2 (V), [ReO(H3L)ClUO2(NO3)2 (OH2)]Cl (VI) and [ReO(H3L)Cl3Th(NO3)2(OH2)]NO3 · 2H2O (VII). The complex ligand coordinates with the heterometal ion via the carboxylate group, and the infrared bands νas COO and νs COO indicate that the carboxylate acts as a unidentate ligand to the heterometal cations. Cu(II) and Fe(III) cations in the heteronuclear complexes have octahedral geometry, while Ni(II) is square planar. Thermal studies explored the possibility of obtaining new heteronuclear complexes pyrolytically in the solid state from the corresponding mother complexes. The structures of the complexes were elucidated by conductance, IR and electronic spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy.  相似文献   

19.
20.
The aqueous one-step reaction of Re(CO)(3)(H(2)O)(3)(+) with pyridine-2-carboxyaldehyde and glycine or alanine produces a new class of cyclic dimeric products. The ligands of the chiral C(2)-symmetric products are bound via the diimine at one rhenium centre and via the pendant carboxylate to a second rhenium center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号