首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M(NMe(2))(4) (M = Ti, Zr, Hf) were found to react with H(2)SiR'Ph (R' = H, Me, Ph) to yield H(2), aminosilanes, and black solids. Unusual amide hydride complexes [(Me(2)N)(3)M(mu-H)(mu-NMe(2))(2)](2)M (M = Zr, 1; Hf, 2) were observed to be intermediates and characterized by single-crystal X-ray diffraction. [(Me(2)N)(3)M(mu-D)(mu-NMe(2))(2)](2)M (1-d(2), 2-d(2)) were prepared through reactions of M(NMe(2))(4) with D(2)SiPh(2). Reactions of (Me(2)N)(3)ZrSi(SiMe(3))(3) (5) with H(2)SiR'Ph were found to give aminosilanes and (Me(2)N)(2)Zr(H)Si(SiMe(3))(3) (6). These reactions are reversible through unusual equilibria such as (Me(2)N)(3)ZrSi(SiMe(3))(3) (5) + H(2)SiPh(2) right arrow over left arrow (Me(2)N)(2)Zr(H)Si(SiMe(3))(3) (6) + HSi(NMe(2))Ph(2). The deuteride ligand in (Me(2)N)(2)Zr(D)Si(SiMe(3))(3) (6-d(1)) undergoes H-D exchange with H(2)SiR'Ph (R' = Me, H) to give 6 and HDSiR'Ph. The reaction of Ti(NMe(2))(4) with SiH(4) in chemical vapor deposition at 450 degrees C yielded thin Ti-Si-N ternary films containing TiN and Si(3)N(4). Ti(NMe(2))(4) reacts with SiH(4) at 23 degrees C to give H(2), HSi(NMe(2))(3), and a black solid. HNMe(2) was not detected in this reaction. The reaction mixture, upon heating, gave TiN and Si(3)N(4) powders. Analyses and reactivities of the black solid revealed that it contained -H and unreacted -NMe(2) ligands but no silicon-containing ligand. Ab initio quantum chemical calculations of the reactions of Ti(NR(2))(4) (R = Me, H) with SiH(4) indicated that the formation of aminosilanes and HTi(NR(2))(3) was favored. These calculations also showed that HTi(NH(2))(3) (3b) reacted with SiH(4) or H(3)Si-NH(2) in the following step to give H(2)Ti(NH(2))(2) (4b) and aminosilanes. The results in the current studies indicated that the role of SiH(4) in its reaction with Ti(NMe(2))(4) was mainly to remove amide ligands as HSi(NMe(2))(3). The removal of amide ligands is incomplete, and the reaction thus yielded "=Ti(H)(NMe(2))" as the black solid. Subsequent heating of the black solid and HSi(NMe(2))(3) may then yield TiN and Si(3)N(4), respectively, as the Ti-Si-N materials.  相似文献   

2.
The multigram syntheses of the protio ligands (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NHSiMe(2)R)(2) (R = Me, H(2)N(2)NN' 3; R = (t)Bu, H(2)N(2)NN() 4) are described via reactions of the previously reported (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NH(2))(2) (1). A new synthesis of 1 is reported starting from 2-aminomethylpyridine and N-tosylaziridine, proceeding via (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NHTs)(2) (2). Reaction of H(2)N(2)NN' or H(2)N(2)NN* with (n)BuLi gives good yields of the dilithiated derivatives Li(2)N(2)NN' and Li(2)N(2)NN*. Reaction of H(2)N(2)NN' or H(2)N(2)NN* with [MCl(2)(CH(2)SiMe(3))(2)(Et(2)O)(2)] gives the cis-dichloride complexes [MCl(2)(L)] (L = N(2)NN', M = Zr 7 or Hf 8; L = N(2)NN(), M = Zr 9). The corresponding reactions of H(2)N(2)NN' or H(2)N(2)NN* with [Zr(NMe(2))(4)] afford the bis(dimethylamide) derivatives [Zr(NMe(2))(2)(L)] (L = N(2)NN' 10 or N(2)NN* 11). All of these protonolysis reactions proceed smoothly and in good yields. Attempts to prepare the titanium complexes [Ti(X)(2)(N(2)NN')] (X = Cl or NMe(2)) were unsuccessful. The X-ray crystal structures of (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NHTs)(2).EtOH, [ZrCl(2)(N(2)NN')].0.5C(6)H(6), [Zr(NMe(2))(2)(N(2)NN')], and [Zr(NMe(2))(2)(N(2)NN*)] are reported.  相似文献   

3.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

4.
Shi Y  Cao C  Odom AL 《Inorganic chemistry》2004,43(1):275-281
The tetradentate, trianionic ligand tris(pyrrolyl-alpha-methyl)amine (H(3)tpa) is available in 84% yield in a single step by a triple Mannich reaction involving 3 equiv of pyrrole, 3 equiv of formaldehyde, and ammonium chloride. The new ligand is readily placed on titanium by transamination on Ti(NMe(2))(4), which generates Ti(NMe(2))(tpa) (1) in 73% yield. Treating 1 with 1 equiv of 1,3-dimethyl-2-iminoimidazolidine (H-imd) in toluene provided a rare example of a titanium 2-iminoimidazolidinide, which displays some interesting structural features. Of note is the Ti-N(imd) distance of 1.768(2) A, a typical Ti-N double to triple bond distance. Reaction of Zr(NMe(2))(4) with H(3)tpa gave a complex of variable composition, probably varying in the amount of labile dimethylamine retained. However, stable discreet compounds were available by addition of THF, pyridine, or 4,4'-di-tert-butyl-2,2'-bipyridine (Bu(t)bpy) to in situ generated Zr(NMe(2))(NHMe(2))(x)(tpa). Three chloro zirconium complexes were generated using three different strategies. Treating Zr(tpa)(NMe(2))(Bu(t)bpy) (5) with ClSiMe(3) afforded Zr(tpa)(Cl)(Bu(t)bpy) (6) in 92% yield. Reaction of Li(3)tpa with ZrCl(4)(THF)(2) in THF gave a 72% yield of ZrCl(tpa)(THF)(2) (7). In addition, treatment of ZrCl(NMe(2))(3) with H(3)tpa cleanly generated ZrCl(NHMe(2))(2)(tpa) (8) in 95% yield. An organometallic zirconium complex was generated on treatment of 6 with LiCtbd1;CPh; alkynyl Zr(Ctbd1;CPh)(tpa)(Bu(t)bpy) (9) was isolated in 62% yield. 1, Ti(imd)(tpa) (2), 6, and 9 were characterized by X-ray diffraction.  相似文献   

5.
Patel S  Li Y  Odom AL 《Inorganic chemistry》2007,46(16):6373-6381
Addition of 2,2'-bipyridine and its derivatives to Ti(NMe2)2(dpma), where dpma is N,N-di(pyrrolyl-alpha-methyl)-N-methylamine, followed by various hydrazine derivatives was used to generate a series of terminal hydrazido(2-) complexes. Among the new complexes is Ti[=NN(H)Ph](But-bpy)(dpma), which was structurally characterized, where But-bpy is 4,4'-tert-butyl-2,2'-bipyridine. Other new complexes reported are Ti(NNMe2)(Me-bpy)(dpma), Ti(NNMe2)(bpy)(dpma), Ti(NNMe2)(Ph-bpy)(dpma), Ti[NN(Me)Ph](But-bpy)(dpma), Ti[NN(Me)p-tolyl](But-bpy)(dpma), and Ti[NN(Me)4-FC6H4](But-bpy)(dpma). Titanium hydrazido(2-) complexes bearing bpy substituents possess a low-energy transition, leading them to have blue or green colors, which is somewhat unusual for titanium(IV) species. Through absorption studies on the derivatives, it was determined that the low-energy transition is the result of an unusual ligand-to-ligand charge transfer where electron density residing on the hydrazido(2-) is transferred to the bpy pi* orbitals.  相似文献   

6.
Aryl bromides react with (H(2)NCH(2)CH(2))(3)N in a reaction catalyzed by Pd(2)(dba)(3) in the presence of BINAP and NaO-t-Bu to give the arylated derivatives (ArylNHCH(2)CH(2))(3)N [Aryl = C(6)H(5) (1a), 4-FC(6)H(4) (1b), 4-t-BuC(6)H(4) (1c), 3,5-Me(2)C(6)H(3) (1d), 3,5-Ph(2)C(6)H(3) (1e), 3,5-(4-t-BuC(6)H(4))(2)C(6)H(3) (1f), 2-MeC(6)H(4) (1g), 2,4,6-Me(3)C(6)H(2) (1h)]. Reactions between (ArNHCH(2)CH(2))(3)N (Ar = C(6)H(5), 4-FC(6)H(4), 3,5-Me(2)C(6)H(3), and 3,5-Ph(2)C(6)H(3)) and Mo(NMe(2))(4) in toluene at 70 degrees C lead to [(ArNHCH(2)CH(2))(3)N]Mo(NMe(2)) complexes in yields ranging from 64 to 96%. Dimethylamido species (Ar = 4-FC(6)H(4), 3,5-Me(2)C(6)H(3)) could be converted into paramagnetic [(ArNHCH(2)CH(2))(3)N]MoCl species by treating them with 2,6-lutidinium chloride in tetrahydrofuran (THF). The "direct reaction" between 1a-f and MoCl(4)(THF)(2) in THF followed by 3 equiv of MeMgCl yielded [(ArNHCH(2)CH(2))(3)N]MoCl species (3a-f) in high yield. If 4 equiv of LiMe instead of MeMgCl are employed in the direct reaction, then [(ArNHCH(2)CH(2))(3)N]MoMe species are formed. Tungsten species, [(ArNHCH(2)CH(2))(3)N]WCl, could be prepared by analogous "direct" methods. Cyclic voltammetric studies reveal that MoCl complexes become more difficult to reduce as the electron donating ability of the [ArylNCH(2)CH(2))(3)N]3- ligand increases, and the reductions become less reversible, consistent with ready loss of chloride from ([(ArNHCH(2)CH(2))(3)N]MoCl)(-). Tungsten complexes are more difficult to reduce, and reductions are irreversible on the CV time scale.  相似文献   

7.
Reaction of the diamidozirconium complex [Zr(N2(TBS)Npy)(NMe2)2] (1) (N2(TBS)Npy = CH3C(C5H4N)(CH2NSiMe2tBu)2) or the diamidohafnium complex [Hf(N2(TBS)Npy)(NMe2)2] (2) with one molar equiv. of 1-aminopyridinium triflate in the presence of one equiv. of pyridine gave the corresponding (1-pyridinio)imido complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(OTf)(py)] (3) and [Hf(N2(TBS)Npy)(=N-NC5H5)(OTf)(py)] (4). These were converted to the acetylide complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(CCPh)(py)] (5) and [Hf(N2(TBS)Npy)(=N-NC5H5)(CCPh)(py)] (6) by reaction with lithium phenylacetylide and substitution of the triflato ligand. Upon reaction of 3 and 4 with one molar equivalent of R-NC (R = tBu, Cy, 2,6-xyl), N-N bond cleavage in the (1-pyridinio)imido unit took place and the respective carbodiimido complexes [M(N2(TBS)Npy](N=C=NR)(OTf)(py)] (7-12) were formed instantaneously. A similar type of reaction with CO gave the isocyanato complex [Zr(N2(TBS)Npy](NCO)(OTf)(py)] (13). Finally, the abstraction of the pyridine ligand in compounds 3 and 4 with B(C6F5)3 led to the formation of the triflato-bridged dinuclear complexes [Zr(N2(TBS)Npy)(=N-NC5H5)(OTf)]2 (14) and [Hf(N2(TBS)Npy)(=N-NC5H5)(OTf)]2 (15).  相似文献   

8.
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2)(2-Ti) was prepared by treatment of Ti(OPr(i)(4)) with the new amino-bis(phenol) Me(2)NCH(2)CH(2)N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)OH-2](2)(2-H(2)). The reduction of 2-Ti with sodium amalgam gave the titanium(III) salt Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2).Na(THF)(2)(8). A comparison of the X-ray structures of 2-Ti and 8 showed that the additional electron in 8 significantly reduced the intensity of the pi-bonding from the oxygen atoms of the isopropoxide groups to titanium. 1-Ca and 8 were active initiators for the ring-opening polymerisation of epsilon-caprolactone (up to 97% conversion of 200 equivalents in 2 hours) and yielded polymers with narrow molecular weight distributions.  相似文献   

9.
The mono(guanidinato) complex [Ti(NMe2)2Cl{i-PrNC[N(SiMe3)2]N-i-Pr}] (1) was prepared by reaction of [Ti(NMe2)2Cl2] with 1 or 2 equiv of the lithium guanidinate salt [Li{i-PrNC[N(SiMe3)2]N-i-Pr}]. Compound 1 has been characterized by X-ray crystallography. Treatment of TiCl4 with 2 equiv of [Li{i-PrNC[N(SiMe3)2]N-i-Pr}] resulted in the formation of dark red crystals. X-ray crystallography showed that these crystals consist of a 70:30 mixture of two bis(guanidinato) complexes, namely, [TiCl2{i-PrNC[N(SiMe3)2]N-i-Pr}{i-PrNC(N=CMe2)N-i-Pr}] (2) and [TiCl2{i-PrNC[N(SiMe3)2]N-i-Pr}{i-PrNC[N(H)-i-Pr]N-i-Pr}] (3). Both compounds 2 and 3 possess a transformed guanidinate ligand. Low-pressure chemical vapor deposition of either compound 1 or [TiCl2{i-PrNC(NMe2)N-i-Pr}] (4) at 600 degrees C results in thin films of titanium carbonitride.  相似文献   

10.
Addition of 2 equiv of LiNMe(2) to the bis(imino)pyridine ferrous dichloride, ((i)(Pr)PDI)FeCl(2) ((i)(Pr)PDI = (2,6-(i)()Pr(2)-C(6)H(3)N=CMe)(2)C(5)H(3)N), resulted in deprotonation of the chelate methyl groups, yielding the bis(enamide)pyridine iron dimethylamine adduct, ((i)(Pr)PDEA)Fe(NHMe(2)) ((i)(Pr)PDEA = (2,6-(i)Pr(2)-C(6)H(3)NC=CH(2))(2)C(5)H(3)N). Performing a similar procedure with KN(SiMe(3))(2) in THF solution afforded the corresponding bis(THF) adduct, ((i)(Pr)PDEA)Fe(THF)(2). ((i)(Pr)PDEA)Fe(NHMe(2)) has also been prepared by addition of the free amine to the iron dialkyl complex, ((i)(Pr)PDI)Fe(CH(2)SiMe(3))(2), implicating formation of a transient iron amide that is sufficiently basic to deprotonate the bis(imino)pyridine methyl groups. Deprotonation of the amine ligand in ((i)(Pr)PDEA)Fe(NHMe(2)) has been accomplished by addition of amide bases to afford the ferrous amide-ate complexes, [((i)(Pr)PDEA)Fe(mu-NMe(2))M] (M = Li, K).  相似文献   

11.
Reaction of anhydrous rare earth metal halides MCl(3) with 2 equiv of 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-imine (Im(Dipp)NH) and 2 equiv of trimethylsilylmethyl lithium (Me(3)SiCH(2)Li) in THF furnished the complexes [(Im(Dipp)N)(2)MCl(THF)(n)] (M = Sc, Y, Lu). The molecular structures of all three compounds were established by single-crystal X-ray diffraction analyses. The coordination spheres around the pentacoordinate metal atoms are best described as trigonal bipyramids. Reaction of YbI(2) with 2 equiv of LiCH(2)SiMe(3) and 2 equiv of the imino ligand Im(Dipp)NH in tetrahydrofuran did not result in a divalent complex, but instead the Yb(III) complex [(Im(Dipp)N)(2)YbI(THF)(2)] was obtained and structurally characterized. Treatment of [(Im(Dipp)N)(2)MCl(THF)(n)] with 1 equiv of LiCH(2)SiMe(3) resulted in the formation of [(Im(Dipp)N)(2)M(CH(2)SiMe(3))(THF)(n)]. The coordination arrangement of these compounds in the solid state at the metal atoms is similar to that found for the starting materials, although the introduction of the neosilyl ligand induces a significantly greater distortion from the ideal trigonal-bipyramidal geometry. [(Im(Dipp)N)(2)Y(CH(2)SiMe(3))(THF)(2)] was used as precatalyst in the intramolecular hydroamination/cyclization reaction of various terminal aminoalkenes and of one aminoalkyne. The complex showed high catalytic activity and selectivity. A comparison with the previously reported dialkyl yttrium complex [(Im(Dipp)N)Y(CH(2)SiMe(3))(2)(THF)(3)] showed no clear tendency in terms of activity.  相似文献   

12.
Liang LC  Hsu YL  Lin ST 《Inorganic chemistry》2011,50(8):3363-3372
The coordination chemistry of group 4 complexes supported by the tridentate, dianionic biphenolate phosphine ligand that carries a phosphorus-bound tert-butyl group, 2,2'-tert-butylphosphino-bis(4,6-di-tert-butylphenolate) ([(t)Bu-OPO](2-)), is described. Metathetical reactions of {[(t)Bu-OPO]Li(2)(DME)}(2) with 2 or 1 equiv of TiCl(4)(THF)(2) selectively produce [(t)Bu-OPO]TiCl(2)(THF) (1a) and Ti[(t)Bu-OPO](2) (2a), respectively. Protonolysis of Ti(O(i)Pr)(4) with 2 or 1 equiv of H(2)[(t)Bu-OPO] cleanly generates 2a and [(t)Bu-OPO]Ti(O(i)Pr)(2) (3a), respectively. Complex 1a can alternatively be prepared from comproportionation of 2a with 1 equiv of TiCl(4)(THF)(2). Treatment of 1a with 2 equiv of NaO(t)Bu affords [(t)Bu-OPO]Ti(O(t)Bu)(2) (4a). In contrast, reactions of {[(t)Bu-OPO]Li(2)(DME)}(2) with ZrCl(4)(THF)(2) or HfCl(4)(THF)(2), regardless of stoichiometry of the starting materials employed, selectively give bis-ligated M[(t)Bu-OPO](2) [M = Zr (2b), Hf (2c)]. Comproportionation of 2b,c with MCl(4)(THF)(2) (M = Zr, Hf) leads to the formation of [(t)Bu-OPO]MCl(2)(THF) [M = Zr (1b), Hf (1c)], which, upon being treated with 2 equiv of NaO(t)Bu, generates [(t)Bu-OPO]M(O(t)Bu)(2)(THF) (4b,c). These synthetic results are markedly different from those obtained from analogous reactions employing a biphenolate phosphine ligand bearing a phosphorus-bound phenyl group ([Ph-OPO](2-)), highlighting a profound phosphorus substituent effect on complex conformation. The alkoxide complexes 3a and 4a-c are all active initiators for catalytic ring-opening polymerization of ε-caprolactone. To assess the potential phosphorus substituent effect on catalysis, [Ph-OPO]Ti(O(i)Pr)(2) (5a) was prepared, and its reactivity was examined. Interestingly, polymers prepared from 3a are characterized by low polydispersities with molecular weights that are linearly dependent on the monomer-to-initiator ratio, thus featuring a living system. The polydispersitiy indexes of polymers prepared from 5a, however, are relatively larger, indicative of the significance of the phosphorus-bound tert-butyl group in 3a in view of discouraging the undesirable transesterification.  相似文献   

13.
Oxidation of [Li(DME)(3)][U(CH(2)SiMe(3))(5)] with 0.5 equiv of I(2), followed by immediate addition of LiCH(2)SiMe(3), affords the high-valent homoleptic U(V) alkyl complex [Li(THF)(4)][U(CH(2)SiMe(3))(6)] (1) in 82% yield. In the solid-state, 1 adopts an octahedral geometry as shown by X-ray crystallographic analysis. Addition of 2 equiv of tert-butanol to [Li(DME)(3)][U(CH(2)SiMe(3))(5)] generates the heteroleptic U(IV) complex [Li(DME)(3)][U(O(t)Bu)(2)(CH(2)SiMe(3))(3)] (2) in high yield. Treatment of 2 with AgOTf fails to produce a U(V) derivative, but instead affords the U(IV) complex (Me(3)SiCH(2))Ag(μ-CH(2)SiMe(3))U(CH(2)SiMe(3))(O(t)Bu)(2)(DME) (3) in 64% yield. Complex 3 has been characterized by X-ray crystallography and is marked by a uranium-silver bond. In contrast, oxidation of 2 can be achieved via reaction with 0.5 equiv of Me(3)NO, producing the heteroleptic U(V) complex [Li(DME)(3)][U(O(t)Bu)(2)(CH(2)SiMe(3))(4)] (4) in moderate yield. We have also attempted the one-electron oxidation of complex 1. Thus, oxidation of 1 with U(O(t)Bu)(6) results in formation of a rare U(VI) alkyl complex, U(CH(2)SiMe(3))(6) (6), which is only stable below -25 °C. Additionally, the electronic properties of 1-4 have been assessed by SQUID magnetometry, while a DFT analysis of complexes 1 and 6 is also provided.  相似文献   

14.
Group 4 metal complexes [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole, M = Ti; R = pyridine, thiazole; M = Zr) containing the tetramethylcyclopentadienyl-dialkylsilyl bridged amidinato as pendant ligand, were synthesized and characterized by elemental analysis, solution (1)H, (13)C and (15)N NMR spectroscopy and experimental (13)C and (15)N CPMAS in the solid state. The crystal structures of [Ti(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole) were determined by single crystal X-ray diffraction studies. All compounds exhibit a distorted tetrahedral geometry, with the ansa-monocyclopentadienyl-amido ligands acting in a bidentate mode. The [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, thiazole; M = Zr, Ti) complexes are ethylene polymerization catalysts in the presence of MAO and they are active precursors in regioselective catalytic hydroamination operating with an anti-Markovnikov mechanism.  相似文献   

15.
The interaction of methoxyethyl functionalized indene compounds (C(9)H(6)-1-R-3-CH(2)CH(2)OMe, R =t-BuNHSiMe(2)(1), Me(3)Si (2), H (3)) with [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5)) produced a series of new ytterbium(II) and europium(II) complexes via tandem silylamine elimination/homolysis of the Ln-N (Ln=Yb, Eu) bond. Treatment of the lanthanide(III) amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln=Yb (4), Eu (5) with 2 equiv. of, 1,2 and 3, respectively, produced, after workup, the ytterbium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Yb(II) (6), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Yb(II) (7), (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Yb(II)(8) and the corresponding europium(II) complexes [eta5:eta1-Me(2)Si(MeOCH(2)CH(2)C(9)H(5))(NHBu-t)](2)Eu(II)(9), (eta5:eta1-MeOCH(2)CH(2)C(9)H(5)SiMe(3))(2)Eu(II)(10) and (eta5:eta1-MeOCH(2)CH(2)C(9)H(6))(2)Eu(II)(11) in moderate to good yield. In contrast, interaction of the corresponding indene compounds 1, 2 or 3 with the lanthanide amides [(Me(3)Si)(2)N](3)Ln (Ln = Yb, Eu) was not observed, while addition of 0.5 equiv. of anhydrous LiCl to the corresponding reaction mixture produced, after workup, the corresponding ytterbium(II) or europium(II) complexes. All the new compounds were fully characterized by spectroscopic and elemental analyses. The structures of complexes, and were determined by single-crystal X-ray analyses. The catalytic activity of all the ytterbium(II) and europium(II) complexes on MMA polymerization was examined. It was found that all the ytterbium(II) and europium(II) complexes can function as single-component MMA polymerization catalysts. The temperature, solvent and ligand effects on the catalytic activity were studied.  相似文献   

16.
Novel yttrium chelating diamide complexes [(Y[ArN(CH(2))(x)NAr](Z)(THF)(n))(y)] (Z = I, CH(SiMe(3))(2), CH(2)Ph, H, N(SiMe(3))(2), OC(6)H(3)-2,6-(t)Bu(2)-4-Me; x = 2, 3; n = 1 or 2; y = 1 or 2) were made via salt metathesis of the potassium diamides (x = 3 (3), x = 2 (4)) and yttrium triiodide in THF (5,10), followed by salt metathesis with the appropriate potassium salt (6-9, 11-13, 15) and further reaction with molecular hydrogen (14). 6 and 11(Z = CH(SiMe(3))(2), x = 2, 3) underwent unprecedented exchange of yttrium for silicon on reaction with phenylsilane to yield (Si[ArN(CH(2))(x)NAr]PhH) (x = 2 (16), 3) and (Si[CH(SiMe(3))(2)]PhH(2)).  相似文献   

17.
The synthesis of Group IV metal complexes that contain a tetradentate dianionic [OSSO]-carborane ligand [(HOC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2 (B(10)H(10))] (1a) is described. Reactions of TiCl(4) and Ti(OiPr)(4) with the [OSSO]-type ligand 1a afford six-coordinated titanium complex [Ti(OC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2)(B(10)H(10))Cl(2)] (2a) and four-coordinated titanium complex [Ti(OC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2)(B(10)H(10))(OiPr)(2)] (2b), respectively. ZrCl(4) and HfCl(4) were treated with 1a to give six-coordinated zirconium complex [Zr(OC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2)(B(10)H(10))Cl(2) (thf)(2)] (2c) and six-coordinated hafnium complex [Hf(OC(6)H(2)tBu(2)-4,6)(2)(CH(2))(2)S(2)C(2)(B(10)H(10))Cl(2)] (2d). All the complexes were fully characterized by IR, NMR spectroscopy, and elemental analysis. In addition, X-ray structure analyses were performed on complexes 2a and 2b and reveal the expected different coordination geometry due to steric hindrance effects. Extended X-ray absorption fine structure (EXAFS) spectroscopy was performed on complexes 2c and 2d to describe the coordination chemistry of this ligand around Zr and Hf. Six-coordinated titanium complex 2a showed good activity toward ethylene polymerization as well as toward copolymerization of ethylene with 1-hexene in the presence of methylaluminoxane (MAO) as cocatalyst (up to 1060 kg[mol(Ti)](-1) h(-1) in the case of 10 atm of ethylene pressure).  相似文献   

18.
Addition of three equivalents of phosphinoamine, (ArNHP(i)Pr(2)) [Ar = 3,5-dimethylphenyl] to M(CH(2)SiMe(3))(3)(THF)(2) [M = Sc, Y] precursors gives complexes of the form (ArNP(i)Pr(2))(3)M(THF) [M = Sc, Y]. In the case of scandium, addition of Sc(CH(2)SiMe(3))(3)(THF)(2) to (ArNP(i)Pr(2))(3)Sc(THF) affords (ArNP(i)Pr(2))(2)Sc(CH(2)SiMe(3))(THF), which has been isolated and structurally characterized. In contrast, addition of Y(CH(2)SiMe(3))(3)(THF)(2) to (ArNP(i)Pr(2))(3)Y(THF) generates a distribution of phosphinoamide-containing products consistent with the formulations (ArNP(i)Pr(2))(2)Y(CH(2)SiMe(3))(THF) and (ArNP(i)Pr(2))Y(CH(2)SiMe(3))(2)(THF), as ascertained using NMR spectroscopy. Attempts to react the alkyl-containing phosphinoamide complexes with small molecules such as H(2) led to disproportionation type processes.  相似文献   

19.
Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))]][BPh4].  相似文献   

20.
Reaction of SnCl(2).dioxane with 2 equiv of Li(THF)(3)Si(SiMe(3))(3) in hexane afforded the cyclotetrastannane [(Me(3)Si)(3)SiSnCl](4) in reasonable yield. From pentane, the product crystallized as a red-orange disolvate in the P&onemacr; space group (triclinic) with a = 14.735(2) ?, b = 14.976(2) ?, c = 24.066(3) ?, alpha = 76.94 degrees, beta = 76.19 degrees, gamma = 62.11 degrees, V = 4517.5 ?(3), and Z = 2. The Sn(4) ring consisted of a slightly distorted, nonplanar (fold angle = 18.9 degrees ) rectangle with Sn-Sn distances of 2.8054(6), 2.8111(6), 2.9122(6), and 2.9146(6) ?. The pentane molecules were disordered. Selected mono- and dihalogermanes were treated with 1 equiv of Li(THF)(3)Si(SiMe(3))(3) or Li(THF)(2.5)Ge(SiMe(3))(3), affording (Me(3)Si)(3)EGe(CF(3))(3) (E = Si, Ge) and (Me(3)Si)(3)GeGeR(3) (R = Cl, CH(3), C(6)H(5)). Besides the monosubstitution product, the reaction of GeCl(4) with 1 equiv of Li(THF)(2.5)Ge(SiMe(3))(3) also gave a small amount of the linear tetragermane (Me(3)Si)(3)GeGeCl(2)GeCl(2)Ge(SiMe(3))(3). Good yields of the analogous phenyl derivative, (Me(3)Si)(3)GeGePh(2)GePh(2)Ge(SiMe(3))(3), were obtained by treating Ph(2)GeCl(2) with 2 equiv of the lithium-germyl reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号