首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of transition metal formate M(HCOO)(2).2H2O (M = Mn, Co, Ni) with 4,4'-bpy (4,4-bipyridine) has led to four new compounds with the formula M(HCOO)2(4,4'-bpy).nH2O (M = Mn, Co (1.Mn, 2.Co), n = 0; M = Co, Ni (3.Co, 4.Ni), n = 5). Compounds 1.Mn and 2.Co are isomorphous and crystallized in the tetragonal crystal system with the chiral space group P4(1)2(1)2. They are of three-dimensional diamondoid structure connected by anti-anti formate with 4,4'-bpy in the cavities of the framework reinforcing the intermetallic connections; the diamond-like net was observed also in their azide analogue (Mn(N3)2(4,4'-bpy)). Compounds 3.Co and 4.Ni are isomorphous also but crystallized in the monoclinic crystal system with the space group Cc. Both structures are uninterpenetrated 3D "CdSO4" type with big channels, constructed by anti-anti formate and 4,4'-bpy. This type of net was not observed in their azide analogue. Residing in the channels, water molecules form a new type of 1D tape constructed by vertex-sharing cyclic pentamers. Magnetic measurements were performed on all of these four compounds. 1.Mn and 2.Co are weak ferromagnets with the critical temperature Tc = 5.3 and 7.4 K, respectively. 3.Co is an antiferromagnet with Neel temperature TN = 3.0 K, and 4.Ni is a weak ferromagnet below 20 K. Hysteresis loop can be observed for 2.Co and 4.Ni at 1.8 K. As an analogue of azide, formate can be used to construct molecular architectures, which structurally and magnetically have great similarities to and also differences from those of azide. This offers a promising method for the design of new molecular architectures with formate.  相似文献   

2.
3.
Reaction of M(OAc)(2).xH(2)O (M = Mn, Cu, or Cd) with di-tert-butyl phosphate (dtbp-H) in a 1:2 molar ratio in methanol followed by slow crystallization of the resultant solid in MeOH/THF medium results in the formation of three new polymeric metal phosphates [M(dtbp)(2)](n)() [M = Mn, 1 (beige); M = Cu, 2 (blue)] and [Cd(dtbp)(2)(H(2)O)](n)(), 3 (colorless)] in good yields. The formation of [Mn(dtbp)(2)](n) (1) proceeds via tetrameric manganese phosphate [Mn(4)(O)(dtbp)(6)] (4), which has been isolated in an analytically pure form. Perfectly air- and moisture-stable compounds 1-4 were characterized with the aid of analytical, thermoanalytical, and spectroscopic techniques. The molecular structures of 1-3 were further established by single-crystal X-ray diffraction studies. Crystal data for 1: C(32)H(72)Mn(2)O(16)P(4), monoclinic, P2(1)/c, a = 19.957(4) A, b = 13.419(1) A, c = 18.083(2) A, beta = 91.25(2) degrees, Z = 4. Crystal data for 2: C(16)H(36)CuO(8)P(2), orthorhombic, Pccn, a = 23.777(2) A, b = 10.074(1) A, c = 10.090(1) A, Z = 4. Crystal data for 3: C(48)H(114)Cd(3)O(27)P(6), triclinic, P1, a = 12.689(3) A, b = 14.364(3) A, c = 22.491(5) A, alpha = 84.54(3) degrees, beta = 79.43(3) degrees, gamma = 70.03(3) degrees, Z = 2. The diffraction studies reveal three different structural forms for the three compounds investigated, each possessing a one-dimensional coordination polymeric structure. While alternating triple and single dtbp bridges are found between the adjacent Mn(2+) ions in 1, uniform double dtbp bridges across the adjacent Cu(2+) ions are present in 2. The cadmium ions in the structure of 3 are pentacoordinated. Thermal analysis (TGA and DSC) indicates that compounds 1-3 convert to the corresponding crystalline metaphosphate materials M(PO(3))(2), in each case at temperatures below 500 degrees C. Similarly, the thermal decomposition of 4 results in the formation of Mn(PO(3))(3) and Mn(2)P(2)O(7). The final materials obtained by independent thermal decomposition of bulk samples have been characterized using IR spectroscopic, powder diffraction, and N(2) adsorption studies.  相似文献   

4.
5.
Four compounds of general formula [M(4,4'bipy)(N(3))2](n) (M = Mn (1), Zn (2), Co (3), Ni (4)) have been synthesized and magnetostructurally characterized by means of X-ray diffraction analysis, IR and ESR spectroscopies, and measurements of the magnetic susceptibility and magnetization. Compound 1 (C(10)H(8)N(8)Mn) crystallizes in the tetragonal P4(3)2(1)2 space group, Z = 4, with a = 8.229(2), b = 8.229(2), and c = 16.915(2) A. It exhibits an acentric 3D structure where Mn(II) ions are linked through EE-azide groups resulting in a diamondoid network. The 4,4'bipy ligands are coordinated on the axial positions of the octahedral spheres reinforcing the intermetallic connections. Weak ferromagnetism arising from spin canting is observed for compound 1. Compounds 2, 3, and 4 are proposed to be isomorphous and would consist of a 2D array where alternating EO + EE/EO + EE/EO + EO azide-chains are linked by 4,4'bipy ligands resulting in pi-pi stacked pyridyl-columns. The azido ligand dispositions in compounds 3 and 4 make possible systems of type -AF-AF-F-, which would give rise to a topological ferromagnetic behavior.  相似文献   

6.
Li Y  Xie L  Liu Y  Yang R  Li X 《Inorganic chemistry》2008,47(22):10372-10377
Two metal-organic frameworks of M(HBTC)(4,4'-bipy).3DMF (M = Ni and Co; H 3BTC = 1,3,5-benzenetricarboxylic acid; 4,4'-bipy = 4,4'-bipyridine; DMF = N,N'-dimethylformamide) were synthesized by a one-pot solution reaction and a solvothermal method, respectively. The as-prepared samples have high specific surface areas of 1590 m (2)/g and 887 m (2)/g. The activation at different temperatures for the guest removal prior to gas loading obviously affects the gas sorption process. Ni(HBTC)(4,4'-bipy).3DMF shows high hydrogen storage capacities of 1.20 wt % at room temperature and 3.42 wt % at 77 K. Co(HBTC)(4,4'-bipy).3DMF shows capacities of 0.96 wt % at 298 K and 2.05 wt % at 77 K. The hydrogen adsorption heats in the two compounds decrease slightly as a function of the amount adsorbed, and it confirms that the H 2 molecules are combined with stronger sites preferentially. Research on the kinetics of hydrogen adsorption shows a fast saturation process (80 s) and no obvious capacity loss after 20 cycles.  相似文献   

7.
8.
Cui Z  Henderson RA 《Inorganic chemistry》2002,41(16):4158-4166
Kinetic studies, using stopped-flow spectrophotometry, on the reactions of [M(4)(SPh)(10)](2)(-) (M = Fe or Co) with PhS(-) to form [M(SPh)(4)](2)(-) are described, as are the reactions between [M(4)(SPh)(10)](2)(-) and [MoS(4)](2)(-) to form [S(2)MoS(2)Fe(SPh)(2)](2)(-) or [S(2)MoS(2)CoS(2)MoS(2)](2)(-). The kinetics of the reactions with PhS(-) are consistent with an initial associative substitution mechanism involving attack of PhS(-) at one of the tetrahedral M sites of [M(4)(SPh)(10)](2)(-) to form [M(4)(SPh)(11)](3)(-). Subsequent or concomitant cleavage of a micro-SPh ligand, at the same M, initiates a cascade of rapid reactions which result ultimately in the complete rupture of the cluster and formation of [M(SPh)(4)](2)(-). The kinetics of the reaction between [M(4)(SPh)(10)](2)(-) and [MoS(4)](2)(-) indicate an initial dissociative substitution mechanism at low concentrations of [MoS(4)](2)(-), in which rate-limiting dissociation of a terminal thiolate from [M(4)(SPh)(10)](2)(-) produces [M(4)(SPh)(9)](-) and the coordinatively unsaturated M site is rapidly attacked by a sulfido group of [MoS(4)](2)(-). It is proposed that subsequent chelation of the MoS(4) ligand results in cleavage of an M-micro-SPh bond, initiating a cascade of reactions which lead to the ultimate break-up of the cluster and formation of the products, [S(2)MoS(2)Fe(SPh)(2)](2)(-) or [S(2)MoS(2)CoS(2)MoS(2)](2)(-). With [Co(4)(SPh)(10)](2)(-), at higher concentrations of [MoS(4)](2)(-), a further substitution pathway is evident which exhibits a second order dependence on the concentration of [MoS(4)](2)(-). The mechanistic picture of cluster disruption which emerges from these studies rationalizes the "all or nothing" reactivity of [M(4)(SPh)(10)](2)(-).  相似文献   

9.
A novel one-dimensional chain coordination polymer [Mn(NAAh(4,4′-bipy)(H2O)4], has been synthesized with a-naphthaleneacetic acid, 4,4′-bipy and manganese(Ⅱ) sulfate as raw materials. Crystal data for this complex: monoclinic, space group P21/c, a = 1.1421(2), b = 1.6337(3), c = 0.94177(19) nm, β = 112.15(3)°, V = 1.6275(6) nm^3, De = 1.407 g/cm^3, Z = 2, μ(MoKa) = 0.467 mm^-1, F(000) = 722, S = 1.007, R= 0.0412 and wR = 0.1022. The crystal structure shows that two neighboring manganese(Ⅱ) ions are linked together by one 4,4′-bipy molecule, and the whole complex molecule forms a one-dimensional chain structure. Each manganese(Ⅱ) ion is coordinated with two oxygen atoms of two a-naphthaleneacetic acid molecules, two nitrogen atoms of two 4,4′-bipy molecules and two oxygen atoms from two water molecules, giving a distorted octahedral coordination geometry. The electrochemical properties were also analyzed.  相似文献   

10.
Dai Z  Chen X  Shi Z  Zhang D  Li G  Feng S 《Inorganic chemistry》2003,42(3):908-912
Two inorganic-organic hybrid compounds with the formula M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (M = Co, Ni) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compounds Co(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (1) and Ni(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (2), which are structural analogues, crystallize in the triclinic space group Ponemacr; with crystal data a = 7.9665(3) A, b = 8.1974(3) A, c = 13.8096(4) A, alpha = 85.704(2) degrees, beta = 73.5180(10) degrees, gamma = 75.645(2) degrees, V = 837.76(5) A(3), and Z = 2 and a = 7.9489(19) A, b = 8.128(2) A, c = 13.709 A, alpha = 85.838(6) degrees, beta = 73.736(8) degrees, gamma = 75.594(9) degrees, V = 823.5(4) A(3), and Z = 2, respectively. [M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10)] (M = Co, Ni) have a three-dimensional structure and consist of two subunits, [(VO(2))(SeO(3))](-) infinite chains and [M(4,4'-bipy)(H(2)O)](2+) fragments. The [(VO(2))(SeO(3))](-) chains are composed of [V(2)Se(4)O(14)](4)(-) clusters linked by VO(4)N triangular bipyramids. The 4,4'-bipy molecule as a bifunctional organic ligand is directly linked to Co or Ni and V atoms, affording the three-dimensionality. The compounds were characterized by infrared spectroscopy and differential thermal and thermogravimetric analyses.  相似文献   

11.
Hou H  Meng X  Song Y  Fan Y  Zhu Y  Lu H  Du C  Shao W 《Inorganic chemistry》2002,41(15):4068-4075
In this paper, treatment of 1,1'-(1,4-butanediyl) bis-1H-benzotriazole (bbbt) and KSCN with Co(II), Mn(II), or Cd(II) afforded three two-dimensional rhombohedral grid coordination polymers [M(bbbt)(2)(NCS)(2)](n)(M = Co, 1; Mn, 2; Cd, 3). The two-dimensional rhombohedral grids are parallel to the crystallographic ac plane. The rhombohedral grid consists of 44-membered rings of M(4)(bbbt)(4), and gives the dimensions of 12.913 x 10.764 A for polymer 1, 13.106 x 10.797 A for polymer 2, and 13.256 x 10.870 A for polymer 3. The three polymers' third-order nonlinear optical (NLO) properties were determined by Z-scan technique in DMF solution. The results show that all three polymers show very large NLO absorption and strong NLO refraction properties. The third-order NLO absorptive coefficients alpha(2) are 5.4 x 10(-9) m W(-1) for polymer 1, 5.2 x 10(-9) m W(-1) for polymer 2, and 5.0 x 10(-9) m W(-1) for polymer 3. The alpha(2) values are larger than those of all the reported cluster compounds. The NLO refractive index values n(2) of the three polymers are 5.73 x 10(-19), 3.55 x 10(-19), and 3.07 x 10(-19) m(2) W(-1), respectively. Their hyperpolarizability gamma values are calculated to be 2.40 x 10(-30) esu for polymer 1, 1.52 x 10(-30) esu for polymer 2, and 1.50 x 10(-30) esu for polymer 3. The gamma values are comparable to those of clusters and better than those of organometallic compounds, semiconductors, and fullerene.  相似文献   

12.
The new, monometal substituted silicotungstates [Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (1), [Co(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (2) and [Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (3) have been synthesized and isolated as the potassium salts K(10)[Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-1), K(10)[Co(H(2)O0(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-2) and K(10)[Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 13.5 H(2)O (K-3), which have been characterized by IR spectroscopy, single crystal X-ray diffraction, elemental analysis and cyclic voltammetry. Polyanions 1-3 are composed of two (gamma-SiW(10)O(36)) units fused on one side via two W-O-W' bridges and on the other side by an octahedrally coordinated trans-MO(4)(OH(2))(2) transition metal fragment, resulting in a structure with C(2v) point group symmetry. Anions 1-3 were synthesized by reaction of the dilacunary precursor [gamma-SiW(10)O(36)](8-) with Mn(2+), Co(2+) and Ni(2+) ions, respectively, in 1 M KCl solution at pH 4.5. The electrochemical properties of 1-3 were studied by cyclic voltammetry and controlled potential coulometry in a pH 5 buffer medium. The waves associated with the W-centers are compared with each other and with those of the parent lacunary precursor [gamma-SiW(10)O(36)](8-) in the same medium. They appear to be dominated by the acid-base properties of the intermediate reduced species. A facile merging of the waves for 3 is observed while those for 1 and 2 remain split. Controlled potential coulometry of the single wave of 3 or the combined waves of 1 and 2 is accompanied by catalysis of the hydrogen evolution reaction. No redox activity was detected for the Ni(2+) center in 3, whereas the Co(2+) center in 2 shows a one-electron redox process. The two-electron, chemically reversible process of the Mn(2+) center in 1 is accompanied by a film deposition on the electrode surface.  相似文献   

13.
Four new transition metal complexes, [Mn(4,4'-bip)2(OH2)4](DBA)·4H2O 1(4,4'-bip = 4,4'-bipyridine, H2DBA = benzene-1,3-dicarboxylic acid) and [M(OH2)(HDPA)2]·3H2O (M = Mn 2, M = Co 3, M = Ni 4,H2DPA = 2,6-pyridine-dicarboxylic acid), have been prepared from the reaction of transition metals and carboxylic acids, and characterized by X-ray and elemental analyses. For compound 1, the packing diagram shows that a three-dimensional network is formed via hydrogen bonds and strong π-π interactions. For compounds 2, 3 and 4,a double-helical chain is formed through hydrogen bonds. Moreover, a three-dimensional network is constructed from chains via complicated hydrogen bonds between crystal water molecules and oxygen atoms of HDPA-.  相似文献   

14.
A series of Werner complexes featuring the tridentate ligand smif, that is, 1,3-di-(2-pyridyl)-2-azaallyl, have been prepared. Syntheses of (smif)(2)M (1-M; M = Cr, Fe) were accomplished via treatment of M(NSiMe(3))(2)(THF)(n) (M = Cr, n = 2; Fe, n = 1) with 2 equiv of (smif)H (1,3-di-(2-pyridyl)-2-azapropene); ortho-methylated ((o)Mesmif)(2)Fe (2-Fe) and ((o)Me(2)smif)(2)Fe (3-Fe) were similarly prepared. Metatheses of MX(2) variants with 2 equiv of Li(smif) or Na(smif) generated 1-M (M = Cr, Mn, Fe, Co, Ni, Zn, Ru). Metathesis of VCl(3)(THF)(3) with 2 Li(smif) with a reducing equiv of Na/Hg present afforded 1-V, while 2 Na(smif) and IrCl(3)(THF)(3) in the presence of NaBPh(4) gave [(smif)(2)Ir]BPh(4) (1(+)-Ir). Electrochemical experiments led to the oxidation of 1-M (M = Cr, Mn, Co) by AgOTf to produce [(smif)(2)M]OTf (1(+)-M), and treatment of Rh(2)(O(2)CCF(3))(4) with 4 equiv Na(smif) and 2 AgOTf gave 1(+)-Rh. Characterizations by NMR, EPR, and UV-vis spectroscopies, SQUID magnetometry, X-ray crystallography, and DFT calculations are presented. Intraligand (IL) transitions derived from promotion of electrons from the unique CNC(nb) (nonbonding) orbitals of the smif backbone to ligand π*-type orbitals are intense (ε ≈ 10,000-60,000 M(-1)cm(-1)), dominate the UV-visible spectra, and give crystals a metallic-looking appearance. High energy K-edge spectroscopy was used to show that the smif in 1-Cr is redox noninnocent, and its electron configuration is best described as (smif(-))(smif(2-))Cr(III); an unusual S = 1 EPR spectrum (X-band) was obtained for 1-Cr.  相似文献   

15.
Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles   总被引:16,自引:0,他引:16  
High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)(3), with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe(3)O(4)) nanoparticles. Similarly, reaction of Fe(acac)(3) and Co(acac)(2) or Mn(acac)(2) with the same diol results in monodisperse CoFe(2)O(4) or MnFe(2)O(4) nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe(3)O(4) can be oxidized to Fe(2)O(3), as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.  相似文献   

16.
An experimental gas-phase study of the intensities and fragmentation patterns of [Mn.(H(2)O)(n)](2+) and [Mn.(ROH)(n)](2+) complexes shows the combinations [Mn.(H(2)O)(4)](2+) and [Mn.(ROH)(4)](2+) to be stable. Evidence in complexes involving the alcohols methanol, ethanol, 1-propanol, and 2-propanol favors preferential fragmentation to [Mn.(ROH)(4)](2+), whereas the fragmentation data for water is less clear. Supporting density functional calculations show that both [Mn.(H(2)O)(4)](2+) and [Mn.(MeOH)(4)](2+) adopt stable tetrahedral configurations, similar to those proposed for biochemical systems where solvent availability and coordination is restricted. Calculated incremental binding energies show a gradual decline on going from one to six solvent molecules, with a step occurring between four and five molecules. The addition of further solvent molecules to the stable [Mn.(MeOH)(4)](2+) unit shows a preference for [Mn.(MeOH)(4)(MeOH)(1,2)](2+) structures, where the extra molecules occupy hydrogen-bonded sites in the form of a secondary solvation shell. Very similar behavior is seen on the part of water. As part of an analysis of the experimental data, the calculations have explored the influence different spins states of Mn(2+) have on solvent geometry. It is concluded that the experimental observations are best reproduced when the central Mn(2+) ion is in the high-spin (6)S ground state. The results are also considered in terms of the biochemical activity of Mn(2+) where the ion is capable of isomorphous substitution with Zn(2+), which itself exhibits a preference for tetrahedral coordination.  相似文献   

17.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

18.
A novel coordination polymer of {[Co(4,4′-bipy)(ambdc)(H2O)2](4,4′-bipy)(DMF)}n has been synthesized using 5-aminoisophthalic acid (H2ambdc), 4,4′-bipyridine(4,4′-bipy) and metal salts. The ambdc ligand in title compound has a μ2-monodentate coordination mode and the structure of the title compound is a two-dimensional network. CCDC: 279054.  相似文献   

19.
20.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号