首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of H2NOH is first-order both in [NH3OH+] and [AuCl4 ]. The rate is increased by the increase in [Cl] and decreased with increase in [H+]. The stoichiometry ratio, [NH3OH+]/[AuCl4 ], is 1. The mechanism consists of the following reactions.
The rate law deduced from the reactions (i)–(iv) is given by Equation (v) considering that [H+] K a.
The reaction (iii) is a combination of the following reactions:
The activation parameters for the reactions (ii) and (iii) are consistent with an outer-sphere electron transfer mechanism.  相似文献   

2.
The enthalpies and entropies of evaporation of Al(CH3)3–Sn(CH3)4and Ga(CH3)3–Sn(CH3)4solutions were determined. It was established that solvates are formed in these systems and that the dissociation energies of specific interactions in them change in the following order: (10.3) > > > (4.08 kJ mol–1), (6.52) > (5.14) > > (4.08 kJ mol–1).  相似文献   

3.
Summary Aquocomplexes of copper(II) and nickel(II) involving (H2NCH2)2, H2NCH2CH2NHCH2CH2NH2 and H2NCH2CH2NHCH2CH2NHCH2CH2NH2 as ligands were prepared and characterised. Using a pH-stat method, the kinetics of the base hydrolysis of amino acid esters such as H2NCH2CO2CH3·HCl (GE), (HO)C6H4CH2-(NH2)CO2CH3·HCl (TE), CH3S(CH2)2CH(NH2)CO2CH3· HCl (ME), HSCH2CH(NH2)CO2C2H5·HCl (CE), (HE) and [—SCH2CH(NH2)CO2CH3]2·2HCl (CysE) was studied. These complexes substantially enhance the rate of hydrolysis, the values of the second-order rate constants being some 10–30 times greater than those obtained in the presence of simple metal ions.  相似文献   

4.
Abstract  The title complexes and have been synthesized in excellent yields by reacting Co(OAc)2·4H2O with H2L1 and H2L2, respectively, in acetonitrile solution. Here, [L1]2− and [L2]2− are the deprotonated forms of N,N-bis(2-hydroxybenzyl)-N′,N′-dimethylethylenediamine and N,N-bis(2-hydroxybenzyl)-2-picolylamine, respectively. The crystal structures of and were determined by x-ray crystallography. In , each cobalt atom has distorted trigonal bipyramid geometry, while in , each cobalt atom has distorted octahedral geometry. Variable temperature magnetic moment measurements show weak antiferromagnetic interaction in . The magnetic characterization for is in agreement with the presence of Co(II) and Co(III) centers. Graphical Abstract  The title complexes and have been synthesized in excellent yields by reacting Co(OAc)2·4H2O with dianionic N2O2 coordinating ligands. In complex 1, each cobalt atom has distorted trigonal bipyramid geometry, while in complex 2, each cobalt atom has distorted octahedral geometry. Variable temperature magnetic moment measurements show weak antiferromagnetic interaction in complex 1. The magnetic characterization for complex 2 is in agreement with the presence of Co(II) and Co(III) centers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Phosphorylation of (S)-prolinol with P(NEt2)3was used to synthesize aminophosphite (2R,5S)- , which was reacted with the corresponding amino alcohols to afford (2S,5R)- (Va) and (2S,5R)- (Vb). Reaction of Vawith [Rh(CO)2Cl]2(P/Rh = 1) yields the mononuclear chelate [Rh(CO)(P^N)Cl] (VIIa), while the analogous reaction with Vbresults in a mixture of products with cis- and trans-orientation of the coordinated phosphorus and nitrogen atoms. Spectral characteristics of the products of coordination of ligands Vaand Vbwere compared with those for the binuclear reference complex [Rh(CO)(L)Cl]2(VIII), where L is P-monodentate ligand (2S,5R)- (VI). The ligands and complexes were studied by IR, NMR, 31P and 13C spectroscopy, mass spectrometry, and elemental analysis methods. X-ray diffraction analysis of crystals VIIIwas performed.  相似文献   

6.
Summary The oxidation of H2O2 by [W(CN)8]3– has been studied in aqueous media between pH 7.87 and 12.10 using both conventional and stopped-flow spectrophotometry. The reaction proceeds without generation of free radicals. The experimental overall rate law, , strongly suggests two types of mechanisms. The first pathway, characterized by the pH-dependent rate constant k s, given by , involves the formation of [W(CN)8· H2O2]3–, [W(CN)8· H2O2·W(CN)8]6– and [W(CN)8· HO]3– intermediates in rapid pre-equilibria steps, and is followed by a one-electron transfer step involving [W(CN)8·HO]3– (k a) and its conjugate base [W(CN)8·O]4– (k b). At 25 °C, I = 0.20 m (NaCl), the rate constant with H a =40±6kJmol–1 and S a =–151±22JK–1mol–1; the rate constant with H b =36±1kJmol–1 and S b =–136±2JK–1mol–1 at 25 °C, I = 0.20 m (NaCl); the acid dissociation constant of [W(CN)8·HO]3–, K 5 =(5.9±1.7)×10–10 m, with and is the first acid dissociation constant of H2O2. The second pathway, with rate constant, k f, involves the formation of [W(CN)8· HO2]4– and is followed by a formal two-electron redox process with [W(CN)8]3–. The pH-dependent rate constant, k f, is given by . The rate constant k 7 =23±6m –1 s –1 with and at 25°C, I = 0.20 m (NaCl).  相似文献   

7.
The kinetics of osmium(VIII)-catalyzed oxidation of hypophosphite with hexacyanoferrate(III) in alkaline medium has been studied. The rate is independent of the concentration of the oxidant. The order with respect to hydroxide ion is variable. Rate law (1) conforms with the experimental observations.
The equilibrium constant 'K 1' for step (2)
has been evaluated kinetically to be (21 ± 5.0), (23 ± 5.0), (26 ± 6) and (32 ± 6) at 25, 30, 32 and 35 °C and I = 1.0 mol dm–3 respectively. The energy and entropy of activation were calculated to be (42 ± 2.0) kJ mol–1 and (82 ± 6.0) J K–1 mol–1 respectively. A plausible reaction mechanism has been suggested.  相似文献   

8.
The reaction of ethyleneimine with sulfenyl chlorides RSCl at –10 C in the presence of a hydrogen chloride acceptor (triethylamine) leads to the formation of N-organylthioaziridines . Compounds with R=n-C5H11, C6H5, o-O2NC6H4 and C6H6CH2 have been obtained by this method. and . have been synthesized analogously.The properties and IR spectra of these compounds have been studied. The action of methyl iodide on N-phenylthioaziridine leads to disproportionation of the molecule with the formation of diphenyl disulfide, -iodoethyltrimethylammonium iodide, and free iodine.For communication VI, see [I].  相似文献   

9.
Summary Hexacoordinated ruthenium(II) alkenyl complexes of the type Ru(CO)(CR=CHPh)( )(PPh3)2 have been prepared from coordinately unsaturated -vinyl complexes [Ru(CO)Cl(CR=CHPh)(PPh3)2] (R = H or Ph) and the sodio-derivative of the containing heterocyclic ligands [ = 3,4-substituted 1,2,4-triazole-5-thione and 5-alkylthio-1,3,4-thiadiazole-2-thione] in a CH2Cl2/MeOH mixture at ambient temperature. The complexes were characterized by their elemental analysis, i.r., 1H and 31P n.m.r. spectra. An octahedral structure with transphosphorus ligands has been assigned on the basis of the spectral data.  相似文献   

10.
The kinetics fo dissociation of thebis complexes [Cu(LH)2]2+ formed by CuII with biguanide andN 1-substituted methyl, phenyl, dimethyl and diethyl biguanides into the mono biguanide complexes in aqueous NaOAc-HOAc buffer media have been studied by stopped-flow spectrophotometry. The results, under pseudo-first-order conditions, indicate kobs=ko+kH[H+]. For the different complexes ko values are comparable, but kH values differ appreciably; log kH versus log K d H is linear withca. unit slope K d H being the equilibrium constant for the process:
  相似文献   

11.
The molecular structure and conformation of p-bis(trimethylsilyl)benzene have been investigated by gas-phase electron diffraction, ab initio MO calculations at the HF/6-31G*, MP2(f.c.)/6-31G*, and B3LYP/6-31G* levels, and MM3 molecular mechanics calculations. The calculations indicate the syn- and anti-coplanar conformations, with two bonds in the plane of the benzene ring, to be energy minima. The perpendicular conformations, with two bonds in a plane orthogonal to the ring plane, are transition states. The two coplanar conformers have nearly the same energy with a low interconversion barrier, 0.3–0.5 kJ mol–1. The calculated lengths of the and bonds differ by only a few thousandths of an angstrom, in agreement with electron diffraction results from molecules containing either or bonds. The geometrical distortion of the benzene ring in p-bis(trimethylsilyl)-benzene may be described by superimposing independent distortions from each of the two SiMe3 groups. The electron diffraction intensities from a previous study (Rozsondai, B.; Zelei, B.; Hargittai, I. J. Mol. Struct. 1982, 95, 187) have been reanalyzed, imposing constraints from the theoretical calculations, and using a model based on a 1:1 mixture of the two coplanar conformers. The effective torsion angles of the SiMe3 groups may indicate nearly free rotation. Important geometrical parameters from the present electron diffraction analysis are , and . While the mean bond lengths are virtually the same from the previous and present analyses, the new ipso angle is in better agreement with the MO calculations [HF, 116.9° MP2(f.c.), 117.1° B3LYP, 116.9°].  相似文献   

12.
The solubility of oxygen has been measured in a number of electrolytes [(LiCl, KCl, RbCl, CsCl, NaF, NaBr, NaI, NaNO3, KBr, KI, KNO3, CaCl2, SrCl2, BaCl2, Li2SO4, K2SO4, Mn(NO3)3)] as a function of concentration at 25°C. The solubilities, mol (kg-H2O)–1, have been fitted to a function of the molality m (standard deviation < 3mol-kg–1)
where A and B are adjustable parameters and the activity coefficient of oxygen )O2) = [O2]0/[O2]. The limiting salting coefficient, k S = (ln / m)m=0 = A, was determined for all salts. The salting coefficients for the chlorides and sodium salts showed a near linear correlation with the crystal molar volume V cryst = 2.52 r 3. The salting coefficients determined from the Scaled Particle Theory were in reasonable agreement with the measured values. The activity coefficients of oxygen in the solutions have been interpreted using the Pitzer equation
where is a parameter that accounts for the interaction of O2 with cations (c) and anions (a) with molalities m a and m c, and accounts for interactions for O2 with the cation and anion pair (c-a). The and coefficients determined for the most of the ions are in reasonable agreement with the tabulations of Clegg and Brimblecombe. The values of for most of the ions are a linear function of the electrostriction molar volume (Velect = V0V cryst).  相似文献   

13.
Summary The acid catalysed decarboxylation ofcis-[Co(cyclen)CO3] has been studied over a range of nitric acid concentrations, at 25, 35.4 and 45°. The rate expression takes the form: kobs=k0+k1 [H+], where kobs is the observed first order rate constant at constant hydrogen ion concentration. The ko term which represents the spontaneous or water reaction is kinetically unimportant at the acidities used in the study. The activation parameters for the acid-catalysed decarboxylation are H=100.4 kj mol–1 and S 298=+51 JK–1mol–1. The acid catalysed reaction is subject to a deuterium solvent isotope effect consistent with a mechanism involving a rapid preequilibrium protonation of the complex followed by a slow ratedetermining ring opening of the carbonate ring.  相似文献   

14.
Isothermal compressibilities T and isobaric thermal expansion coefficients p have been determined for mixtures of ethylbenzene+n-nonane, +n-decane, and +n-dodecane at 25 and 45°C in the whole range of composition. The excess functions and have been obtained at each measured mole fraction. The first one is zero for ethylbenzene +n-nonane, positive for ethylbenzene +n-decane, and +n-dodecane and increases with chain length n of the n-alkane. The function is positive for the three studied systems and nearly constant with n. Both mixing functions increase slightly with temperature. From this measurement and supplementary literature data of molar heat capacities at constant pressure C P , the isentropic compressibilities S, the molar heat capacities at constant volume C V and the corresponding mixing functions have been calculated at 25°C. Furthermore, the pressure dependence of excess enthalpy H B , at zero pressure and at 25°C has been obtained from our experimental results of and experimental literature values for excess volume V E .  相似文献   

15.
The solubility of rhodochrosite (MnCO3) at 25°C under constant carbon dioxide partial pressure p(CO2) was determined in NaCl solutions as a function of ionic strength I. The dissolution of MnCO3(s) for the reaction
has been determined as a function of pH. From these values, we have determined the equilibrium constant for the stoichiometric solubility of MnCO3(s) in NaCl solutions
These values have been fitted to the equation
with a standard error of = 0.1 with Iand concentrations in molalities. The extrapolated value of log K o sp(–10.3) in water is in good agreement with literature data (–10.1 to 10.8) determined in solutions of different composition and ionic strength. The measured values of the activity coefficient, T(Mn2+) and T(CO3 2–), have been used to estimate the stability constant for the formation of the MnCO3ion pair, K *(MnCO3 0). The value of K 0(MnCO3 0) calculated from the values of K *(MnCO3) by the Pitzer equation ( = 0.1) in this study (4.8 ± 0.1) is in reasonable agreement with literature data.  相似文献   

16.
Ab initio molecular orbital and density functional methods have been used to study the potential energy surfaces of the substituted acetic acids HX—CH2—COOH, where X is one of the Group VIA Chalcophiles S, Se, or Te. The various conformers adopted by these compounds provide information regarding the energetic importance of nonbonded and hydrogen bonding interactions involving oxygen atoms with different hybridizations. Density functional and ab initio molecular orbital methods yield similar structural and energetic trends for these compounds. Calculations show that the structure of the lowest-energy conformer of each of these acids has the X—C—C—O backbone substantially twisted from planarity, similar to that previously observed for the corresponding aldehydes, HX—CH2—CHO. In the twisted acid structures the shortest distance is within about 0.1 Å of the sum of the X and O van der Waals radii, which reduces overcrowding of the lone pairs of electrons on these atoms. In conformers where the heavy atom backbone is planar, one of the distances is significantly shorter than the sum of the van der Waals radii, and the total molecular energy of these conformers is higher than that of the twisted forms. The variation of X—H vibrational frequencies among conformers reflects the extent of X—H hydrogen bonding, and indicates that formation of this hydrogen bond is not the dominant factor in determining the lowest-energy conformation. When X is oxygen (HO—CH2—COOH), the lowest-energy conformer is also nonplanar, whereas for the corresponding aldehyde, HO—CH2—CHO, the lowest-energy conformer is a planar structure with CS symmetry. The conformational preferences of these simple species provide reference points for inter- and intramolecular interactions in more complex systems of biological interest.  相似文献   

17.
Luminescence Behavior of Polynuclear Alkynylcopper(I) Phosphines   总被引:1,自引:0,他引:1  
A series of soluble trinuclear and tetranuclear copper(I) complexes containing 3-l acetylides , and have been synthesized and shown to exhibit rich photoluminescent behavior at room temperature. The electrochemistry of the trinuclear Cu(I) acetylide complexes and the excited-state redox properties of have been investigated. The X-ray crystal structures of and have been determined.  相似文献   

18.
Diazomethane and ethyl diazoacetate are highly reactive and highly versatile synthetic reagents that undergo numerous related reactions. However, while the former is highly dangerous because of its toxicity and explosive behavior; the latter is much more benign. This is usually ascribed to resonance stabilization in ethyl diazoacetate involving an extra carbonyl group that is absent in diazomethane, cf. $$\begin{gathered} {\text{EtOOC}}---{\text{CH}} = {\rm N}^ + = {\rm N}^ - \leftrightarrow {\rm E}{\text{tOOC}}---{\text{CH}}^ - ---{\text{N}}^{\text{ + }} \equiv {\text{N}} \leftrightarrow {\text{EtOC(O}}^ - {\text{)}} = {\text{CH}}---{\text{N}}^{\text{ + }} \equiv {\rm N} \hfill \\ {\text{CH}}_{\text{2}} = {\rm N}^ + = {\rm N}^ - \leftrightarrow {\text{CH}}_{\text{2}}^ - ---{\text{N}}^{\text{ + }} \equiv {\rm N} \hfill \\ \end{gathered}$$ The additional resonance stabilization is derived using a recent literature measurement of the enthalpy of an ethyl diazoacetate/aldehyde reaction, key enthalpies of formation, also from the literature, and some simplifying assumptions. The resonance stabilization is deduced to be but 16 kJ/mol, merely 4 kcal/mol. But, oh how grateful we are for this!  相似文献   

19.
The kinetics of hexacyanoferrate(III) reduction by hydrogen peroxide in strongly alkaline media leading to hexacyanoferrate(II) ion have been studied spectrophotometrically within the wavelength range 300–500 nm. The reaction obeys a simple pseudo-first-order rate expression under the applied conditions, namely, a large excess of the reductant and OH anion concentrations, and a low oxidant concentration. The linear dependences of the pseudo-first-order rate constant on OH and H2O2 concentrations are consistent with the rate law of the form: where and are the second- and the pseudo-third-order rate constants for the electron transfer from HO2 and O2 2− to [Fe(CN)6]3−, respectively. The apparent activation parameters determined at 0.4 M NaOH are as follows: ΔH # = (18.0 ± 1.0) kJ mol−1 and ΔS # = (−155 ± 3.5) J K−1 mol−1. The possible mechanism of the reaction is discussed.  相似文献   

20.
Fifteen unique energy minima and thirteen transition states on the C 2H2B2 potential surface have been located and optimized at the MP2 level of theory with the 6-311G(d,p) basis set. The planar four-membered ring isomer , 1, an analog of cyclobutadiene, is a transition state lying 37 kcal/mol above the nonplanar four-membered ring , 3. The planar , 10, is the second most stable species found, lying 72.2 kcal/mol below 3. The nonplanar, butterfly-shaped ring, 4, is a local minimum 33.7 kcal/mol more stable than 3. A four-membered ring isomer with alternating boron–carbon locations, , 5, lies 67.0 kcal/mol below 3 and 33.3 kcal/mol below 4. The ring of 5 is planar with one hydrogen above and one below the plane (C 2h symmetry). The borylene-substituted boracyclopropene, , 8, is a planar local minimum lying 36.0 kcal/mol above 5. The most stable C2H2B2 isomer found was the planar, four-membered ring system 22 (D 2h symmetry) composed of two BCC three-membered rings fused across the C-C bond. Structure 22 lies 22.2 kcal/mole below 10, 105.4 kcal/mol below 3, 71.7 kcal/mol below 4, and 38.2 kcal/mol below 5. Isomer 22 is the structural analog of the trialene form of C4H2. The most stable linear isomer, HB BH, 26, was surprisingly 50.5 kcal/mol less stable than 22. The stabilities of the two most stable cyclic isomers 10 and 22 may be explained by aromaticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号