首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We calculate the time delay between different relativistic images formed by black hole gravitational lensing in the strong field limit. For spherically symmetric black holes, it turns out that the time delay between the first two images is proportional to the minimum impact angle. Their ratio gives a very interesting and precise measure of the distance of the black hole. Moreover, using also the separation between the images and their luminosity ratio, it is possible to extract the mass of the black hole. The time delay for the black hole at the center of our Galaxy is just few minutes, but for supermassive black holes with M=108 ÷109 in the neighbourhood of the Local Group the time delay amounts to few days, thus being measurable with a good accuracy.  相似文献   

3.
We consider whether the new horizon-first law works in higher-dimensional f(R) theory. We firstly obtain the general formulas to calculate the entropy and the energy of a general spherically-symmetric black hole in D-dimensional f(R) theory. For applications, we compute the entropies and the energies of some black hokes in some interesting higher-dimensional f(R) theories.  相似文献   

4.
We study the entropy of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action thatemerges in the low-energy of string theory, beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics we derive the quantum correctionsto the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.  相似文献   

5.
Based on the hidden conformed symmetry, some authors have proposed a Harrison metric for the Schwarzschild black hole. We give a procedure which can generate a family of Harrison metrics starting from a general set of SL(2, R) vector fields. By analogy with the subtracted geometry of the Kerr black hole, we find a new Harrison metric for the Schwaxzschild case. its conformal generators axe also investigated using the Killing equations in the near-horizon limit.  相似文献   

6.
Hawking radiation is usually studied in standard coordinates. In this paper, we calculate the Hawking temperature of a Schwarzschild black hole in harmonic coordinates, as well as that of a Reissner-Nordström black hole. The action of a scalar field near the event horizon can be formulated exactly without omitting some high-order terms. We show dimensional reduction for Hawking temperature is also valid for harmonic coordinates, and verify further that the results are independent on concrete coordinates. With the help of Lorentz transformation, our work might also serve as a basis to investigate the thermal radiation from a moving black hole.  相似文献   

7.
in the light of Robinson and Wilczek's new idea, and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole, we generally extend the work to Kerr-Newman black hole in dragging coordinates frame. It is shown that the flows introduced to cancel the anomaly at the event horizon are equal to the corresponding Hawking radiation in dragging coordinates frame, which supports and extends Robinson and Wilczek's opinion.  相似文献   

8.
In the light of Robinson and Wilczek's new idea, and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole, we generally extend the work to Kerr-Newman black hole in dragging coordinates frame. It is shown that the flows introduced to cancel the anomaly at the event horizon are equal to the corresponding Hawking radiation in dragging coordinates frame, which supports and extends Robinson and Wilczek's opinion.  相似文献   

9.
10.
Time's apparent passage has long been debated by philosophers, with no decisive argument for or against its objective existence. In this paper we show that introducing the issue of determinism gives the debate a new, empirical twist. We prove that any theory that states that the basic laws of physics are time-symmetric must be strictly deterministic. It is only determinism that enables time reversal, whether theoretical or experimental, of any entropy-increasing process. A contradiction therefore arises between Hawking's [1] argument that physical law is time-symmetric and his controversial claim [2] that black-hole evaporation introduces a fundamental unpredictability into the physical world. The latter claim forcibly entails an intrinsic time-arrow independent of boundary conditions. A simulation of a simple system under time reversal shows how an intrinsic time arrow re-emerges, destroying the time reversal, when even the slightest failure of determinism occurs. This proof is then extended to the classical behavior of black holes. We conclude with pointing out the affinity between time's arrow and its apparent passage.  相似文献   

11.
Based on the work of Ghosh and Pereze, who view the black hole entropy as the logarithm of the number of quantum states on the Quantum Isolated Horizon (QIH)§ the entropy of Reissner-Nordström black hole is studied. According to the Unruh temperature, the statistical entropy of quantum fields under the background of Reissner-Nordström spacetime is calculated by means of quantum statistics. In the calculations we take the integral from the position of QIH to infinity, so the obtained entropy is the entanglement entropy outside the QIH. In Reissner-Nordström spacetime it is shown that if only the position of QIH is properly chosen the leading term of logarithm of the number of quantum states on the QIH is equal to the leading term of the entanglement entropy outside the black hole horizon, and both are the Bekenstein-Hawking entropy. The results reveal the relation between the entanglement entropy of black hole and the logarithm of the number of quantum states.  相似文献   

12.
By considering the dual Liouville theory emerging in the near-horizon limit, we study the thermodynamics of general rotating black hole with four charges in four dimensions. Both the black hole entropy and temperature are found to agree with the gravitational expectations. The relations between the new Liouville formalism and the anomaly approach are also discussed.  相似文献   

13.
By considering the dual Liouville theory emerging in the near-horizon limit, we study the thermodynamics of general rotating black hole with four charges in four dimensions. Both the black hole entropy and temperature are found to agree with the gravitational expectations. The relations between the new Liouville formalism and the anomaly approach are also discussed.  相似文献   

14.
Four spherically symmetric but non-asymptotically flat black hole solutions surrounded with spherical dark matter distribution perceived under the minimal length scale effect is derived via the generalized uncertainty principle. Here, the effect of this quantum correction, described by the parameter γ $\gamma$ , is considered on a toy model galaxy with dark matter and the three well-known dark matter distributions: the cold dark matter, scalar field dark matter, and the universal rotation curve. The aim is to find constraints to γ $\gamma$ by applying these solutions to the known supermassive black holes: Sagittarius A (Sgr. A*) and Messier 87* (M87*), in conjunction with the available Event Horizon telescope. The effect of γ $\gamma$ is then examined on the event horizon, photonsphere, and shadow radii, where unique deviations from the Schwarzschild case are observed. As for the shadow radii, bounds are obtained for the values of γ $\gamma$ on each black hole solution at 3 σ $3\sigma$ confidence level. The results revealed that under minimal length scale effect, black holes can give positive (larger shadow) and negative values (smaller shadow) of γ $\gamma$ , which are supported indirectly by laboratory experiments and astrophysical or cosmological observations, respectively.  相似文献   

15.
We investigate the Hawking radiation of a GMGHS charged black hole from the heterotic string scenario by the massive particles turmeling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein- Hawking entropy and the derived emission spectrum does not deviate from the pure thermal spectrum of Schwrzschild's black hole.  相似文献   

16.
17.
The harmonic metric for Schwarzschild black hole with a uniform velocity is presented. In the limit of weak field and low velocity, this metric reduces to the post-Newtonian approximation for one moving point mass. As an application, we derive the dynamics of particle and photon in the weak-field limit for the moving Schwarzschild black hole with an arbitrary velocity. It is found that the relativistic motion of gravitational source can induce an additional centripetal force on the test particle, which may be comparable to or even larger than the conventional Newtonian gravitational force.  相似文献   

18.
In this note, we recalculate the entropy of the Vaidya black hole on the event horizon by considering the generalized uncertainty principle based on the brick-wall model. The result shows that we need not impose a cut-off by hand anymore and the result satisfies the Bekenstein-Hawking law as well.  相似文献   

19.
The entropy of a scalar field at the horizon is investigated in the Vaidya space-time. We take into account the effect of the generalized uncertainty principle on the state density and the entropy. The divergence in the brick-wall model is removed and the entropy proportional to the horizon area is obtained.  相似文献   

20.
Kinnersley has discussed the space–time of an arbitrarily accelerating point mass. We select a simple case in which the black hole is uniformly accelerated and the mass does not vary with time. We adopt thin film brick-wall model to calculate the entropy of black hole. We find that both the temperature and the entropy density of black hole can be calculated at every point on the horizon. This result indicates that the conclusion that black hole entropy is proportional to its area can be applied to horizon not only globally, but also locally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号