首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intersubband transitions in quantum well have extremely large oscillator strengths and induce strong nonlinear effects in structures where inversion symmetry is broken, realized by growing AlGaAs quantum wells with asymmetrical A1 gradients. These compositionally asymmetrical multiquantum wells may thus be viewed as giant “quasimolecules” optimized for optimal nonlinearities in the mid infrared. Optical rectification as well as second harmonic generation have been measured in those structures using a continuous CO2 laser. At 10.6 μm the nonlinear coefficients are more than 3 orders of magnitude higher in these samples than for bulk GaAs (i.e. χ0(2) = 5.3 × 10−6m/V, χ2ω(2) = 7.2 × 10−7 m/V) and are in good agreement with theoretical predictions. We present more complex “pseudo-molecules” involving weakly coupled quantum wells. The optical rectification effects in these devices are so large χ0(2) = 1.6 × 10−3 m/V) that application to infrared detection may be envisioned.  相似文献   

2.
The infrared spectrum of yttrium monoiodide has been excited in an electrodeless microwave discharge and explored between 2500 and 12 000cm−1 with a high-resolution Fourier transform spectrometer. A unique system is observed (ν00 = 9905.520 cm−1), which we attribute to a 1Π → 1Σ transition and an extensive analysis is made. Rovibrational constants are obtained for both states mainly from a simultaneous multiband fitting. This procedure is applied to the whole set of 2231 observed line wavenumbers in the 1-0, 0-0, and 0–1 bands, yielding a final weighted standard deviation of 0.0038 cm−1. Furthermore, a partial analysis of the 2-0 and 3-1 bands is performed. The following equilibrium constants are derived (cm−1): ω′e=192.210 ω′exe=0.463Be=0.0399133 α′e=0.0001150ω″e=215.815 ω″exe=0.514Be=0.0422163 α″e=0.0001125 High-order constants Dv and Hv are also calculated for the various vibrational levels (v′ = 0, 1, 2, 3; v″ = 0, 1).  相似文献   

3.
New sharp bands of formic acid have been observed in the near ultraviolet at the long wave-length end of the previously observed diffuse band system (2250–2500 Å) by considerably extending the absorption path length. Both the diffuse and sharp bands belong to the same vibrational system which is assigned to the π*n electronic transition in the carbonyl group. Extensive progressions are observed in the carbonyl stretching frequency which is greatly reduced in the excited state (fundamental ν3′ ≈ 1080 cm−1) and many intervals of about 400 cm−1 are assigned to the OCO bending frequency ν7′.A band contour analysis of the 2593 Å band shows that the molecule is nonplanar in the excited state because of the magnitude and sign of the inertial defect. From this analysis, the rotational constants for the excited state are S=1.8755, B0.4042, C=0.3378cm−1 By the plausible assumption that the important changes in the molecule are in the C=0 bond length, the OCO angle, and the nonplanarity due to the formyl hydrogen, the following excited state parameters are derived.rC=0 = 1.407A.The changes in formic acid are closely analogous to the changes in formyl fluoride as a result of the π*n transition.  相似文献   

4.
We investigated the generic phase diagram of the electron doped superconductor, Nd2−xCexCuO4, using films prepared by metal organic decomposition. After careful oxygen reduction treatment to remove interstitial Oap atoms, we found that the Tc increases monotonically from 24 K to 29 K with decreasing x from 0.15 to 0.00, demonstrating a quite different phase diagram from the previous bulk one. The implication of our results is discussed on the basis of tremendous influence of Oap “impurities” on superconductivity and also magnetism in T′ cuprates. Then we conclude that our result represents the generic phase diagram for oxygen-stoichiometric Nd2−xCexCuO4.  相似文献   

5.
We report on the observation of 1 3PJb) production in the reaction ′→γχb→γγ→γγ(e+e or μ+μ). The data were recorded with the nonmagnetic CUSB detector at the Cornell Electron Storage Ring, CESR. We observe 124 γγ events with either an electron or muon pair in the final state. In the γγ correlation plot about 40% of the events cluster around (120, 430) MeV.  相似文献   

6.
We investigate modification of Kolmogorov wave turbulence in QCD calculating gluon spectra as functions of time in the presence of a low energy source which feeds in energy density in the infrared region at a time-dependent rate. Then considering the picture of saturation constraints as has been constructed in the “bottom-up” thermalization approach we revisit that picture for RHIC center-mass energy, W=130 GeV, and also extend it to LHC center-mass energy, W=5500 GeV, thus for two cases having an opportunity to calculate the equilibration time, τeq|therm, of the gluon system produced in a central heavy ion collision at mid-rapidity region. Thereby, at RHIC and LHC energies we can match the equilibration time, obtained from the late stage gluon spectrum of the modified Kolmogorov wave turbulence, onto that of the “bottom-up” thermalization and other evolutional approaches as well. In addition, from the revised “bottom-up” approach we find the gluon liberation coefficient to be on the average, ε0.81–1.06 at RHIC and ε0.50–0.56 at LHC. We also present other phenomenological estimates of τtherm which, at QCD realistic couplings, yield 0.45–0.65 fmτtherm0.97–2.72 fm at RHIC and 0.31–0.40 fmτtherm0.86–2.04 fm at LHC. We show that the second upper-bounds of τtherm in both cases are due to the late stage gluon spectrum of the original Kolmogorov wave turbulence in QCD, previously deduced with a low energy source which feeds in energy density at a constant rate. On the other hand, the lower-bounds and first upper-bounds of τtherm are due to the late stage gluon spectrum of the modified QCD wave turbulence, deduced here at the specific time-dependent rate. In the latter case, at certain conditions, taking also into account both very small and realistic couplings we give estimates: 0.65 fmτtherm1.29 fm at RHIC and 0.52 fmτtherm1.16 fm at LHC, as well as at realistic couplings we find 0.53<τtherm<0.7 fm at RHIC and 0.41<τtherm<0.65 fm at LHC.  相似文献   

7.
We report on the observation of an ηη′ threshold enhancement produced in p annihilations at rest into π0ηη′, which we identify with the recently discovered ƒ0(1500).  相似文献   

8.
The emission spectrum of the PSe radical is reported for the first time. Seventy-eight reddegraded bands in the region 4000–6500 Å have been measured and assigned to the A2Π-X2Π transition of PSe. Isotope shifts observed for some bandheads have been utilized in deriving the vibrational numbering. The molecular constants have been determined as (in units of cm−1): ω′ = 406.9, ω′eχ′e = 1.3, ω″ = 556.9, ω″eχ″e = 1.3, and Te = 19477.3 for the 2Π1/2 states; and ω′e = 402.4, ω′eχ′e = 1.5, ω″e = 556.8, ω″eχ″e = 1.6, and Te = 19178.0 for the 2Π3/2 states.  相似文献   

9.
Rotationally and isotopically resolved single-photon excitation spectra of jet-cooled Cl2in the wavelength region between 133 and 138 nm were recorded using a tunable vacuum ultraviolet “laser” generated by two-photon resonantly enhanced four-wave difference mixing in Kr gas. The dominant transition (11Σ+uX1Σ+g) is well known theoretically and experimentally to involve a double-well excited state potential energy curve formed by a strong homogeneous Rydberg-state/ion-pair state avoided crossing. In this work, single isotopomer spectra were obtained by dispersing and detecting ions produced by (1 + 1′) resonance-enhanced multiphoton ionization in a time-of-flight mass spectrometer. In this way, rotational constants were deduced for the first time for many v′ levels of the least abundant molecular isotope,37Cl2, which are both localized in the Rydberg well, and delocalized in the ion-pair portion of the 1-state potential energy curve. Our experimentally derived band origins andBvvalues test the practical validity of an analytical 11Σ+upotential energy function which is a modified version of the one first proposed by J. Wörmer, T. Möller, J. Stapelfeldt, G. Zimmerer, D. Haaks, S. Kampf, J. Le Calvé, and M. C. Castex (1988. Z. Phys. D,7,383–395).  相似文献   

10.
We identify the four observed intermediate states between J/ψ and ψ′ with the four jPC = j++P waves of a relativistic bound state model. Assuming a point-like quark photon vertex we calculate bounds on their radiative couplings to J/ψ and ψ′ by the help of four-dimensional dipole sum rules. These bounds also imply upper bounds on the total widths.  相似文献   

11.
Results are presented from a search for a ρ0ρ0 enhancement in antiproton annihilations. A ρ0ρ0 resonance was recently observed in radiative ψ decays, and its existence has been supported by the results of an antiproton experiment at 5.7 GeV/c. No indication of this ρ0ρ0 enhancement is seen is our data, in direct contradiction with the earlier, lower statistics experiment.  相似文献   

12.
It is shown that in the π+π meson mass-spectrum in the reaction e+e → π+ππ0 at 2E > 1 GeV one should expect the anomalously large effect of the -ω interference. It can be used as a tool for the elucidation of the details of the e+eVπ reaction dynamics and as the additional possibility for the determination of the electromagnetic -ω mixing parameters.  相似文献   

13.
We present a phenomenological theory of the homogeneous orbital dynamics of the class of “separable” anisotropic superfluid phases which includes the ABM state generally identified with 3He-A. The theory is developed by analogy with the spin dynamics described in the first paper of this series; the basic variables are the orientation of the Cooper-pair wavefunction (in the ABM phase, the l-vector) and a quantity K which we visualize as the “pseudo-angular momentum” of the Cooper pairs but which must be distinguished, in general, from the total orbital angular momentum of the system. In the ABM case l is the analog of d in the spin dynamics and K of the “superfluid spin” Sp. Important points of difference from the spin case which are taken into account include the fact that a rotation of l without a simultaneous rotation of the normal-component distribution strongly increases the energy of the system (“normal locking”), and that the equilibrium value of K is zero even for finite total angular momentum. The theory does not claim to handle correctly effects associated with any intrinsic angular momentum arising from particle-hole asymmetry, but it is shown that the magnitude of this quantity can be estimated directly from experimental data and is extremely small; also, the Landau damping does not emerge automatically from the theory, but can be put in in an ad hoc way. With these provisos the theory should be valid for all frequencies irrespective of the value of ωτ. (Δ = gap parameter, τ = quasi-particle relaxation time.) It disagrees with all existing phenomenological theories of comparable generality, although the disagreement with that of Volovik and Mineev is confined to the “gapless” region very close to Tc.The phenomenological equations of motion, which are similar in general form to those of the spin dynamics with damping, involve an “orbital susceptibility of the Cooper pairs” χorb(T). We give a possible microscopic definition of the variable K and use it to calculate χorb(T) for a general phase of the “separable” type. The theory is checked by inserting the resulting formula in the phenomenological equations for ωτ 1 and comparing with the results of a fully microscopic calculation based on the collisionless kinetic equation; precise agreement is obtained for both the ABM and the (real) polar phase, showing that the complex nature of the ABM phase and the associated “pair angular momentum” is largely irrelevant to its orbital dynamics. We note also that the phenomenological theory gives a good qualitative picture even when ω Δ(T), e.g., for the flapping mode near Tc. Our theory permits a simple and unified calculation of (1) the Cross-Anderson viscous torque in the overdamped regime, (2) the flapping-mode frequency near zero temperature, (3) orbital effects on the NMR, both at low temperatures and near Tc, (4) the orbit wave spectrum at zero temperature (this requires a generalization to inhomogeneous situations which is possible at T = 0 but probably not elsewhere). We also discuss the possibility of experiments of the Einstein-de Haas type. Generally speaking, our results for any one particular application can be also obtained from some alternative theory, but in the case of orbital and spin relaxation very close to Tc (within the “gapless” region) our predictions, while somewhat tentative and qualitative, appear to disagree with those of all existing theories. We discuss briefly how our approach could be extended to apply to more general phases.  相似文献   

14.
《Physics letters. [Part B]》2004,580(3-4):119-128
The cross section of the process e+e→π0π0γ has been measured in the c.m. energy range 600–970 MeV with the CMD-2 detector. The following branching ratios have been determined:

and

. Evidence for the ρ0f0(600)γ decay has been obtained:

. From a search for the process e+e→ηπ0γ the following upper limit has been obtained: at 90% CL.  相似文献   

15.
Brain iron deposition was assessed at 1.5 T in the caudate nucleus, globus pallidus and frontal and parietooccipital white matter in 28 human immunodeficiency virus (HIV)-infected patients and 15 control subjects with a new Partially Refocussed Interleaved Multi-Echo sequence by measuring 1/T2, 1/T2* and 1/T2′ (i.e., R2, and R2′). There were significant differences in the R2 and of the caudate nucleus (p < 0.0001 and p < 0.05) and the R2, and R2′ of the globus pallidus (p < 0.001, p < 0.005 and p < 0.05) in HIV-infected patients compared to control subjects. There was a trend for higher values of R2, and R2′ in the globus pallidus and caudate nucleus in HIV-infected patients with later stage HIV disease. These results suggest that there is greater iron deposition in the basal ganglia of HIV-infected patients compared with control subjects, with a predilection for the globus pallidus. The relationship between iron deposition in the brain and various parameters of severity of HIV infection remains uncertain.  相似文献   

16.
It is indicated that generalized expressions for dφ2/dn and d2φ2/dn2, applicable to multiple-prism pulse compression, have been known in the literature since 1987.  相似文献   

17.
We show that the K–K spectrum of IIB string on is described by “twisted chiral” superfields, naturally described in “harmonic superspace”, obtained by taking suitable gauge singlets polynomials of the D3-brane boundary superconformal field theory.To each p-order polynomial is associated a massive K–K short representation with states. The quadratic polynomial corresponds to the “supercurrent multiplet” describing the “massless” bulk graviton multiplet.  相似文献   

18.
The infrared (IR) spectrum of PD3 has been recorded in the 1580–1800 cm−1 range at a resolution of 0.0027 cm−1. About 2400 rovibrational transitions with J=K22 have been measured and assigned to the ν1 (A1) and ν3 (E) stretching fundamentals. These include 506 “perturbation-allowed” transitions with selection rules Δ(kl)=±3. Splittings of the K′′=3 lines have been observed. Effects of strong perturbations are evident in the spectrum. Therefore the rovibrational Hamiltonian adopted for the analysis explicitly takes into account the Coriolis and k-type interactions between the v1=1 and v3=1 states, and includes also several essential resonances within these states. The rotational structure in the v1=1 and v3=1 vibrational states up to J=K=18 was reproduced by fitting simultaneously all experimental data. Thirty-four parameters reproduced 1950 transitions retained in the final cycle with a standard deviation of the fit equal to 4.9 × 10−4 cm−1 (about the precision of the experimental measurements).  相似文献   

19.
The on-shell ππ scattering amplitudes within and on the boundary of the subthreshold triangle (0 ≤ s ≤ Σ, 0 ≤ t ≤ Σ, 0 ≤ u ≤ Σ ≡ 4μ2) are investigated. Interior Dispersion Relations, when combined with experimental ππ phase shifts, inelasticities, and scattering lengths, provide an almost perfect tool for this study. The general results obtained are in striking agreement with the chiral model of Weinberg.  相似文献   

20.
The orange system of FeO has been reinvestigated using low-temperature molecular beam laser-induced fluorescence spectra, obtained by supersonic jet cooling. Two new weak bands have been found, and analyses of some of the previously known bands extended. Measurements of the 54Fe-56Fe isotope shifts have been made for most of the bands, and the hyperfine structure of the low-J lines has been recorded for two of the strongest bands of 57FeO. The isotope shifts are consistent with the presence of two 5Δi-5Δi transitions lying within 1000 cm−1; the origins of the Ω = 4 spin components lie at 5583 and 6110 Å, respectively. The hyperfine patterns and the spin-orbit structure indicate that the upper state electron configurations are (3dδ)3 (3dπ)2 (3dσ)1, (D5Δi, 5583 Å) and O(2pπ)3 (4sσ)1 (3dδ)3(3dπ)3, (D5Δi, 6110 Å). The bond length in the D′ state (r0 = 1.654 Å) has been obtained from a deperturbation of the 6110 Å band; it is only 0.035 Å longer than in the ground state, which indicates that electron promotion between the two π orbitals, nominally O(2pπ) and Fe(3dπ), has only a small effect on the strength of the bonding. The new isotope data still do not clarify the vibrational assignments of the higher levels, which are disorganized by extensive electronic perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号