首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The half-lives of the lowest 212+ states in 91Nb and 93Tc were measured with the pulsed beam direct timing method. The results are T12 = 0.92 ± 0.10 ns and 1.61 ± 0.10 ns for 91Nb and 93Tc, respectively. The known experimental data on E2 transition rates in N = 50 nuclei are analysed in the light of a suggested seniority mixing in the proton 1g92. orbit. It is concluded that the E2 matrix elements cannot be explained satisfactorily in the proton p12g92 model space, even if free seniority mixing is allowed.  相似文献   

2.
A level scheme of 144Gd has been established using the 144Sm(α, 4nγ) reaction and in-beam spectroscopy methods. Excitation functions, γ-ray angular distributions, γ-γ coincidence spectra, γ-spectra time related to the cyclotron beam bursts and conversion coefficients for the delayed transitions have been measured.The level scheme comprises 11 levels with spins up to I = 12. Two isomers, a 13 ± 2 ns, 7? state at 2471.4 keV and a 145 ± 30 ns, 10+ state at 3433.0 keV have been observed. The former has similar excitation energy as the 7? isomers in 142Sm, 140Nd and 138Ce and it may arise from the d32?1 × νh112?1} configuration although its lifetime seems to indicate some degree of collectivity. The 10+ state has a similar excitation energy as the 10+ isomer found in 138Ce and it may arise from the dominant νh112?2 configuration. Below the 10+ isomer in 144Gd only two excited states have positive parity; the hitherto known first 2+ and 4+ states. The 11+ and 12+ states must include four-particle configurations or they have to be of collective nature. The latter possibility is supported by the considerable E2/M1 mixture (≈ 20 %) observed for the 11+ to 10+ transition. An analysis of the systematics of ground band levels in the N = 80 isotones shows the same gradual behavior between the two VMI solutions previously found for the Te isotopes.  相似文献   

3.
Nanosecond lifetimes of several states in 147Nd have been studied using the reaction 146Nd(d, pγ)147Nd with 10 MeV deuterons. The following lifetimes were observed: the 72? level at 49.9 keV, 2.5±0.5 ns; the 52? level at 127.9 keV, ≦ 0.8 ns; the 92? level at 190.3 keV, 1.1±0.3 ns and the 12? level at 214.6 keV, 5.8±0.8 ns. The wave functions of the states were constructed using an axial particle-plus-rotor model. The free parameters used are compared to the systematics observed in the neighbouring heavier N = 87 isotones as well as in the N = 89 and 91 isotones. Transition rates within the f72 and h92 based excitations, separately, are reasonably well reproduced, but the connecting transitions indicate too strong a mixing of the shells in the calculation.  相似文献   

4.
Levels of the N = 81 nucleus 145Gd have been investigated by in-beam γ-ray and conversion electron spectroscopy with the 144Sm(3He, 2n) reaction. Fourteen new low- and medium-spin states between 1.0 and 2.4 MeV excitation, the known yrast levels up to spin 212+, five other high-spin non-yrast states and a new 20.4 ns 132 isomer at 2200.2 keV in 145Gd have been observed. The isomer decays via a fast 927.3 keV E3 transition with B(E3) = 48 ± 7 W.u. Another weaker decay branch is a mixed, strongly hindered E1 + M2 + E3 transition to the vh?1112 state. We propose an octupole vf72j?2 × 3? main configuration for the isomer, analogous to the 997 keV 132+ isomer in 147Gd. The levels of 145Gd are discussed on the basis of the spherical shell model.  相似文献   

5.
A theoretical model used to describe the B′3Σu? and B3Πg states of N2 is presented. Using recently acquired high resolution spectra of the B′3Σu? → B3Πg (0-0) band, rotational energy levels of the v = 0 vibrational levels of these two states are generated with this model. These levels are in excellent agreement with those obtained using a combination differences technique. The precision of the model generated levels is 0.01 cm?1. The previously unpublished rotational levels of Dieke and Heath for the A3Σu+, B3Πg and C3Πu states are referenced to the N2X1Σg+ (v = 0, J = 0) ground level and tabulated here. Estimates of the precision of their work are made.  相似文献   

6.
Potential energy curves for the 4Σ+u, 4Πg and 6Σ+g states of N+2 that dissociate to N (4S0) and N+(3P), have been determined from a complete active space self-consistent field calculation. The 6Σ+g state is found to be significantly bound (De = 2.68 eV) with a minimum at 1.72 Å.  相似文献   

7.
The lifetimes of five excited states in 197Au up to an excitation energy of 885 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20Ne and 120 MeV 35Cl ion beams. The experimentally determined spectroscopy of the low-lying levels 32+ (ground state) and 12+, 322+, 52+, and 72+ at 77.3, 268.8, 278.9, and 547.5 keV excitation energy, respectively, has been critically compared with the detailed predictions of the de-Shalit weak-coupling core-excitation model. When the model is taken to represent the case of a d32 proton hole coupled to a 198Hg core, the model parameters obtained are in accord with the criteria implicit for weak core coupling and, at the same time, are in remarkably good agreement with virtually all measured E2 and M1 transition rates.  相似文献   

8.
A shell-model calculation of the N = 51, 39 ≦ Z ≦ 42 nuclei is presented. The 88Sr nucleus is assumed to be an inert closed core. The extra-core protons are restricted to the (2p12, 1g92) configurations, and the active neutron is allowed to occupy the 2d52, 3s12, 2d32 and 1g72 orbits. The proton-proton effective interaction is directly taken from the previous analysis on the energy levels for N = 50 isotones by Ball et al. The proton-neutron effective interaction is assumed to be of the form of the surface δ-interaction. The energy spectra are calculated from a least-squares fit to the experimental data, varying the T = 0 and T = 1 strengths of the surface δ-interaction. Spectroscopic factors, E2 transition rates and two-body matrix elements are also calculated and compared with the observed values and the previous theoretical results.  相似文献   

9.
The reduced M2 transition probabilities 112?172+1 in the odd-A isotopes 109–121Sn are found to reveal a specific behaviour. B(M2) values are calculated in the framework of the quasiparticlephonon model. The coupling of a quasineutron with the 2+, 3? and 2? one-phonon core excitation is taken into account. Inclusion of all one-phonon 2? states up to 24 MeV in the wave functions of the excited states 112?1and72+1 reduces the theoretical B(M2) values by 3–4 times as compared to the single-particle values. The specific B(M2) dependence on the mass number appears to be due to the pairing effect.  相似文献   

10.
The energy levels of 97Ru have been studied through the decay of 31.1 min 97gRh and 44.3 min 97mRh using Ge(Li), Si(Li), Nal, plastic and anthracene detectors in singles and in coincidence experiments. A total of 139 γ-rays were observed. Ninety-eight γ-rays have been placed into the decay schemes involving 38 excited levels in 97Ru. The level energy of 97mRh was determined to be 258.6 keV. The spin and parity of 97gRh and 97mRh are assigned as 92+and12?, respectively. The fraction of decay of the isomer by the isomeric transition was measured with the Si(Li) detector, and αk values were determined for strong transitions. The half-life of the 188.6 keV, 32+ state in 97Ru was determined as 0.23 ± 0.02 ns by delayed e-γ coincidence measurements. The nuclear structure of low-lying levels is compared with similar levels in other odd-mass nuclei (N = 53) isotones and Ru isotopes).  相似文献   

11.
No perturbation between two valence states of NO has ever been identified, although many valence-Rydberg and several Rydberg-Rydberg perturbations have been extensively studied. The first valence-valence crossing to be experimentally documented for NO is reported here and occurs between the 15N18O B2Π (v = 18) and B2Δ (v = 1) levels. No level shifts larger than the detection limit of 0.1 cm?1 are observed at the crossings near J = 6.5 [B 2Π(F1) ~ B′ 2Δ(F2)] and J = 12.5 [B 2Π(F1) ~ B′ 2Δ(F1)]; two crossings involving higher rotational levels could not be examined. Semi-empirical calculations of spin-orbit and Coriolis perturbation matrix elements indicate that although the electronic part of the B 2Π ~ B′ 2Δ interaction is large, a small vibrational factor renders the 15N18O B (v = 18) ? B′ (v = 1) perturbation unobservable. Semi-empirical estimates are given for all perturbation matrix elements of the operators Σia?ili·si and B(L±S? ? J±L?) which connect states belonging to the configurations (σ2p)2(π2p)412p), (σ2p)(π2p)412p)2, and (σ2p)2(π2p)312p)2.  相似文献   

12.
The α-decay properties of very short-lived N = 128 isotones, 216Ra, 217Ac and 218Th, were investigated by the pulsed-beam method. Alpha emitters of interest were produced in the bombardment of 208Pb or 209Bi with 65–96 MeV 12C or 14N ions and α-decays were measured between natural beam bursts of the cyclotron. The results obtained are = 9.349±0.008 MeVand t12 = 182±10 ns for216Ra, 9.650±0.010 MeV and 111±7 ns for217Ac, 9.665±0.010 MeV and 96±7 ns for218Th. The experimental reduced α-widths of N = 128 isotones from 212Po to 218Th are shown to agree well with the simple shell model calculation.  相似文献   

13.
The 169Tm(t, α)168Er reaction has been studied using 17 MeV polarized tritons from the Los Alamos National Laboratory tandem Van de Graaff accelerator. The α-spectra were analyzed with a Q3D magnetic spectrometer. The overall energy resolution was typically ~ 15 keV (FHWM) and angular distributions of cross sections and analyzing powers were obtained for levels up to ~ 2.7 MeV. The fact that spins and parities for all levels up to ? 2 MeV were previously known from an extensive series of (n, γ) studies made it possible to determine specific two-quasiproton structures for many bands from the present results. The Kπ = 2+ γ-vibrational band was found to have a large 32+ [411]p + 12+[411]p admixture, consistent with the predicted microscopic composition of this phonon, but no 52[413]p ? 12+ [411]p component was observed. The Kπ = 04+ band at 1833 keV has ~ 25% of the 12+ [411]p ? 12+[411]p two-quasiproton strength. This is in excellent agreement with the Soloviev model but is inconsistent with the interacting boson model, in which the Kπ = 04+ band is composed almost completely of multiphonon configurations that should not be populated in a single-nucleon transfer reaction. The Kπ = 4?, 72?[523]p + 12+ [411]p two-quasiproton and the Kπ = 4?, 72+[633]n + 12?[521]n two-quasineutron states are mixed strongly with each other, but the two Kπ = 3? bands composed of antiparallel couplings of the same particles are not. A good qualitative explanation of this mixing pattern is provided in terms of the effective neutron-proton interaction.  相似文献   

14.
Discharges through mixtures of helium and neon show two band groups near 4250 and 4100 Å as first observed by Druyvesteyn. These bands, assigned to the HeNe+ ion by Tanaka, Yoshino, and Freeman, have been studied under high resolution and have been fairly completely analyzed. The upper state of the transition is a very weakly bound state resulting from He+(2S) + Ne(1S0). There are two lower states resulting from the two components of Ne+(2P) + He(1S0). The upper of these two (2Π12) is also very weakly bound while the lower of the two, the 2Σ+ ground state, has a dissociation energy of 0.69 eV and an re value of 1.30 Å. All bands in both band groups show four branches designated Rff, Qef, Qfe, and Pee. From their analysis the rotational constants in the various vibrational levels of the three electronic states have been determined. While no spin splitting in the B2Σ+ state has been found the ground state X2Σ shows a very large spin splitting and the A22Π12 state a very large Ω-type doubling. The vibrational numberings in all these states were established by the study of the spectrum of 3HeNe+. At the same time the hyperfine structure observed in all lines of 3HeNe+ confirmed the nature of the upper state B2Σ+ as resulting from He+ + Ne, i.e., by charge exchange from the ground state. The 2Π12 component of the 2Π state has not been observed, presumably because of low intensity.  相似文献   

15.
The 146, 148Nd(α, χn) and 148, 150Nd(3He, χn) reactions at Eα = 20–43 MeV and E3He = 19–27 MeV, are used to study excited states in the 149Sm86 and 149Sm87 nucleides and consequently the low-spin odd-parity excitation. The mixing ratios and multipolarities of the most prominent transitions are deduced from the combined evidence of angular distribution and electron conversion data. The spin-parity assignments for most of the levels observed are established. In 148Sm the ground state band extending to Iπ = 10+ is predominantly populated. A negative-parity odd-spin band extending from Iπ = 3?through 11? is also observed. The bands in 148Sm are interpreted within the framework of the interacting boson approximation model. In 149Sm positive-parity levels with spin up to 252 and negative-parity levels with spins up to 212 are observed. The predominant γ-decay proceeds via transitions associated with i132, h92, f72 and h112 intrinsic configurations. The branching ratios B(E1)/B(E2) are calculated and compared in both 148Sm and 149Sm nucleides. The B(E1)/B(E2) dependence on the value of Z for some N = 86 (as well as 88 and 84) isotones showing a minimum of Z = 64 was noted. A 4 ns high-spin isomer mainly decaying into the positive-parity band based on the i132 state in 149Sm is found. Experimental evidence is presented to interprete the 12+, 152+, … and 92?, 132?, …, ΔI = 2, sequences in 149Sm as arising from the coupling of an h92 neutron to the octupole and quadrupole modes of the 148Sm core nucleus. The absolute reaction cross sections for the 146, 148, 150Nd(3He, χn) reactions have been determined for different bombarding energies. The mixing of the f72 and h92 shells is discussed in the framework of an axial-particle-rotor model calculation.  相似文献   

16.
Emission spectra for the electronic transitions 6–17pπ 3Πg-2s a3Σu+ and 7–16pσ 3Σg+-2s a3Σu+ of He2 are reported and the electronic structures of npπ 3Πg? and np(2Σg+, 3Πg+) characterized. The energy levels associated with (1σg)2(1σu)np(3Σu+, 3Πg+) exhibit extensive channel mixing, which leads to a breakdown of conventional band models for the higher n1-members of these Rydberg “series.” However, a model based on multichannel quantum defect theory quantitatively correlates the observed level structures. The higher-energy (n1 > ~5) portions of the np(3Σg+,3Πg+) channels can be represented by two eigen-quantum defects μ1 = 0.225 and μ2 = 0.930 and the close- to loose-coupling matrix elements U11 = U22 = [N(2N + 1)?1]12 and U12 = ?U21 = [(N + 1)(2N + 1)?1]12. The inclusion of energy dependence in the μα's leads to quantitative correlations for all n1-values.  相似文献   

17.
The A 2Σ+-X 2Π emission spectrum of HCl+ has been measured and analyzed for four isotopic combinations. These analyses extend previous work and provide rotational constants for the v = 0–2 levels of the ground state and for the v = 0–9 levels of the excited state. RKR potentials have been determined for both states, although the upper state could not be fitted precisely to such a model. Calculated relative intensities based on these potentials demonstrated that the electronic transition moment must change rapidly with lower state vibrational quantum number. Although considerable caution should be exercised in applying the concept of equilibrium constants to the A 2Σ+ state, the following are the best estimates of these constants (in cm?1) for the X 2Π state of H35Cl+: Be = 9.9406, ωe = 2673.7, Ae = ? 643.7, and re = 1.315 A?. For the A 2Σ+ state of H35Cl: Te = 28 628.08, Be ~ 7.505, ωe ~ 1606.5, and re = 1.514 A?.  相似文献   

18.
Negative-parity levels in the doubly even N = 82, Z nuclei, with 3.0 MeV ? Ex? 6.0 MeV are described in an extended unified-model approach, where neutron hole states in the Z = 50, N = 82 closed shell core, (i.e. 2d32?1,3sS12?1,2d52?1,1g72?1) are coupled to the low-lying levels (Ex ? 2.0 MeV) of the odd-neutron N = 83, Z nuclei. This particular configuration space of generalized neutron particle-hole states (GNPH) is particularly suited for describing negative-parity levels obtained in proton inelastic scattering through isobaric analogue resonances (IAR), corresponding to the N = 83, Z low-lying nuclear levels. Level schemes as well as partial decay widths and angular distributions are calculated and compared extensively with the available experimental data. Also spectroscopic factors, as well as wave functions, deduced from the experimental results are studied in detail. Thus in the cases of 136Xe, 138Ba, 140Ce, 142Nd and 144Sm, some of the important neutron particle-hole configurations can uniquely be determined in the energy region 3.0 MeV ?Ex ? 6.0 MeV.  相似文献   

19.
We study the potentials of the form U(r)=?r?1+λV(r), (ddr)(r2dVdr)?0, and show that the energy levels satisfy the inequalities E(Nc, l)?E(Nc, l+1) to first order in λ, where Nc denotes the coulombic principal quantum number and l the angular momentum. Similarly for potentials U(r)=r2+λV(r), (ddr2)2V(r)?0, we prove to first order in λ that E?(NH,l)?E?(NH,l+2), where NH denotes the harmonic oscillator quantum number. In the latter case, we give also quantitative restrictions on the relative positions at the lth and (l+1)th states.  相似文献   

20.
The high-spin level structures of 152Dy and 153Dy were studied experimentally with 154, 155Gd(α xnγ) in-beam reactions, and for 152Dy also with 144, 146Nd(12C, xnγ) reactions. The experiments included measurements of singles γ-ray and conversion-electron spectra, γ-ray angular distributions and Eγ-t and Eγ-Eγ-t coincidences. A multiplicity filter set-up was used to study the feeding and decay of isomeric states in 152Dy. In 152Dy about twenty so far unknown levels were found, including two high-spin isomeric states with T12 ≈ 60 and ≈ 13 ns at excitation energies Ex ≈ 5.04 and 6.08 MeV, respectively. These states are compared with recent calculations on yrast traps. The level scheme of 153Dy contains 28 levels up to Ex = 4.1 MeV and Jπ = (372+). Band structures in both nuclei are discussed in comparison with other N = 86 and N = 87 isotones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号