首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density functional theory (DFT) calculations were carried out to describe the molecular structures, molecular orbitals, atomic charges, UV-vis absorption spectra, IR, and Raman spectra of bis(phthalocyaninato) rare earth(III) complexes M(Pc)(2) (M = Y, La) as well as their reduced products [M(Pc)(2)](-) (M = Y, La). Good consistency was found between the calculated results and experimental data. Reduction of the neutral M(Pc)(2) to [M(Pc)(2)]- induces the reorganization of their orbitals and charge distribution and decreases the inter-ring interaction. With the increase of ionic size from Y to La, the inter-ring distance of both the neutral and reduced double-decker complexes M(Pc)(2) and [M(Pc)(2)](-) (M = Y, La) increases, the inter-ring interaction and splitting of the Q bands decrease, and corresponding bands in the IR and Raman spectra show a red shift. The orbital energy level and orbital nature of the frontier orbitals are also described and explained in terms of atomic character. The present work, representing the first systemic DFT study on the bis(phthalocyaninato) yttrium and lanthanum complexes sheds further light on clearly understanding structure and spectroscopic properties of bis(phthalocyaninato) rare earth complexes.  相似文献   

2.
The half-sandwich rare-earth complexes [M(III)(acac)(TClPP)] (M = Sm, Eu, Y; TClPP = meso-tetrakis(4-chlorophenyl)porphyrinate; acac = acetylacetonate), generated in situ from [M(acac)3] x n H2O and H2(TClPP), were treated with 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine [H2{Pc(alpha-OC5H11)4}] (Pc = phthalocyaninate) under reflux in n-octanol to yield both the neutral nonprotonated and protonated (phthalocyaninato)(porphyrinato) rare-earth double-decker complexes, [M(III){Pc(alpha-OC5H11)4}(TClPP)] (1-3) and [M(III)H{Pc(alpha-OC5H11)4}(TClPP)] (4-6), respectively. In contrast, reaction of [Y(III)(acac)(TClPP)] with 1,4,8,11,15,18,22,25-octakis(1-butyloxy)phthalocyanine [H2Pc(alpha-OC4H9)8] gave only the protonated double-decker complex [Y(III)H{Pc(alpha-OC4H9)8}(TClPP)] (7). These observations clearly show the importance of the number and positions of substituents on the phthalocyanine ligand in controlling the nature of the (phthalocyaninato)(porphyrinato) rare-earth double-deckers obtained. In particular, alpha-alkoxylation of the phthalocyanine ligand is found to stabilize the protonated form, a fact supported by molecular-orbital calculations. A combination of mass spectrometry, NMR, UV-visible, near-IR, MCD, and IR spectroscopy, and X-ray diffraction analyses, facilitated the differentiation of the newly prepared neutral nonprotonated and protonated double-decker complexes. The crystal structure of the protonated form has been determined for the first time.  相似文献   

3.
Zhu P  Zhang X  Wang H  Zhang Y  Bian Y  Jiang J 《Inorganic chemistry》2012,51(10):5651-5659
A series of four mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes (Pc)M[Por(Fc)(2)] [Pc = phthalocyaninate; Por(Fc)(2) = 5,15-di(ferrocenyl)-porphyrinate; M = Eu (1), Y (2), Ho (3), Lu (4)] and their europium(III) triple-decker counterpart (Pc)Eu(Pc)Eu[Por(Fc)(2)] (5), each with two ferrocenyl units at the meso-positions of their porphyrin ligands, have been designed and prepared. The double- and triple-decker complexes 1-5 were characterized by elemental analysis and various spectroscopic methods. The molecular structures of two double-deckers 1 and 4 were also determined by single-crystal X-ray diffraction analysis. Electrochemical studies of these novel sandwich complexes revealed two consecutive ferrocene-based one-electron oxidation waves, suggesting the effective electronic coupling between the two ferrocenyl units. Nevertheless, the separation between the two consecutive ferrocene-based oxidation waves increases from 1 to 4, along with the decrease of rare earth ionic radius, indicating the effect of rare earth size on tuning the coupling between the two ferrocenyl units. Furthermore, the splitting between the two ferrocene-based one-electron oxidations for triple-decker 5 is even smaller than that for 1, showing that the electronic interaction between the two ferrocene centers can also be tuned through changing the linking sandwich framework from double-decker to triple-decker. For further understanding of the electronic coupling between ferrocenyl groups, DFT calculation is carried out to clarify the electronic delocalization and the molecular orbital distribution in these double-decker complexes.  相似文献   

4.
Mixed cyclization of 3-mono-, 4-mono-, or 4,5-di(porphyrinated) phthalonitrile compounds 2, 3, or 6 and unsubstituted phthalonitrile with the half-sandwich complex [EuIII(acac)(Pc)] (Pc=phthalocyaninate, acac=acetylacetonate) as the template in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in n-pentanol afforded novel porphyrin-appended europium(III) bis(phthalocyaninato) complexes 7-9 in 30-40% yield. These mixed tetrapyrrole triads and tetrad were spectroscopically and electrochemically characterized and their photophysical properties were also investigated with steady-state and transient spectroscopic methods. It has been found that the fluorescence of the porphyrin moiety is quenched effectively by the double-decker unit through an intramolecular photoinduced electron-transfer process, which takes place in several hundred femtoseconds, while the recombination of the charge-separated state occurs in several picoseconds. By using different phthalocyanines containing different numbers of porphyrin substituents at the peripheral or nonperipheral position(s) of the ligand, while the other unsubstituted phthalocyanine remains unchanged in these double-deckers, the effects of the number and the position of the porphyrin substituents on these photophysical processes were also examined.  相似文献   

5.
The location of the hole and acid proton in neutral nonprotonated and protonated mixed (phthalocyaninato)(porphyrinato) yttrium double-decker complexes, respectively, is studied on the basis of density functional theory (DFT) calculations on the molecular structures, molecular orbitals, atomic charges, and electronic absorption and infrared spectra of the neutral, reduced, and two possible protonated species of a mixed (phthalocyaninato)(porphyrinato) yttrium compound: [(Pc)Y(Por)], [(Pc)Y(Por)]-, [(HPc)Y(Por)], and [(Pc)Y(HPor)], respectively. When the neutral [(Pc)Y(Por)] is reduced to [(Pc)Y(Por)]-, the calculated results on the molecular structure, atomic charge, and electronic absorption and infrared spectra show that the added electron has more influence on the Pc ring than on its Por counterpart, suggesting that the location of the hole is on the Pc ring in neutral [(Pc)Y(Por)]. Nevertheless, comparison of the calculation results on the structure, orbital composition, charge distribution, and electronic absorption and infrared spectra between [(HPc)Y(Por)] and [(Pc)Y(HPor)] leads to the conclusion that the acid proton in the protonated mixed (phthalocyaninato)(porphyrinato) yttrium compound should be localized on the Por ring rather than the Pc ring, despite the localization of the hole on the Pc ring in [(Pc)Y(Por)]. This result is in line with the trend revealed by comparative studies of the X-ray single-crystal molecular structures between [MIII{Pc(alpha-OC5H11)4}(TClPP)] and [M(III)H{Pc(alpha-OC5H11)4}(TClPP)] (H2TClPP=5,10,15,20-tetrakis(4-chlorophenyl)porphyrin; M=Sm, Eu). The present work not only represents the first systemic DFT study on the structures and properties of mixed (phthalocyaninato)(porphyrinato) yttrium double-decker complexes, but more importantly sheds further light on the nature of protonated bis(tetrapyrrole) rare-earth complexes.  相似文献   

6.
With the view to creating novel sandwich-type tetrapyrrole rare earth complexes toward potential applications in material science and chiral catalysis, two new optically active mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes with both (R)- and (S)-enantiomers [M(2)(Pc)(2)(TCBP)] {TCBP = Meso-tetrakis [3,4-(11,12:13,14-di(1',2'-naphtho)-1,4,7,10,15,18-hexaoxacycloeicosa-2,11,13-triene)-phenyl] porphyrinate; M = Eu (1), Y (2)} have been designed and prepared by treating optically active metal free porphyrin (R)-/(S)-H(2)TCBP with M(Pc)(2) in the presence of corresponding M(acac)(3)·nH(2)O (acac = acetylacetonate) in refluxing 1,2,4-trichlorobenzene (TCB). These novel mixed ring rare earth triple-decker compounds were characterized by a wide range of spectroscopic methods including MS, (1)H NMR, IR, electronic absorption, and magnetic circular-dichroism (MCD) spectroscopic measurements in addition to elemental analysis. Perfect mirror image relationship was observed in the Soret and Q absorption regions in the circular-dichroism (CD) spectra of the (R)- and (S)-enantiomers, indicating the optically active nature of these two mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes. This result reveals the effective chiral information transfer from the peripheral chiral binaphthyl units to the porphyrin and phthalocyanine chromophores in the triple-decker molecule because of the intense π-π interaction between porphyrin and phthalocyanine rings. In addition, their electrochemical properties have also been investigated by cyclic voltammetry (CV).  相似文献   

7.
Homoleptic bis(phthalocyaninato) rare-earth double-deckers complexes [M(III)[Pc(alpha-OC5H11)4]2] (M = Eu, Y, Lu; Pc(alpha-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninate) have been prepared by treating the metal-free phthalocyanine H2Pc(alpha-OC5H11)4 with the corresponding M(acac)3.nH2O (acac = acetylacetonate) in refluxing n-octanol. Due to the C4h symmetry of the Pc(alpha-OC5H11)4 ligand and the double-decker structure, all the reactions give a mixture of two stereoisomers with C4h and D4 symmetry. The former isomer, which is a major product, can be partially separated by recrystallization due to its higher crystallinity. The molecular structure of the major isomer of the Y analogue has been determined by single-crystal X-ray diffraction analysis. The metal center is eight-coordinate bound to the isoindole nitrogen atoms of the two phthalocyaninato ligands, forming a distorted square antiprism. Such an arrangement leads to an interesting pinwheel structure when viewed along the C4 axis, which assumes a very unusual S8 symmetry. The major isomers of all these double-deckers have also been characterized with a wide range of spectroscopic methods. A systematic investigation of their electronic absorption and electrochemical data reveals that the pi-pi interaction between the two Pc(alpha-OC5H11)4 rings is weaker than that for the corresponding unsubstituted or beta-substituted bis(phthalocyaninato) analogues.  相似文献   

8.
The vibrational (IR and Raman) spectra of neutral and reduced mixed (phthalocyaninato)(porphyrinato) yttrium(III) double-decker complexes Y(Pc)(Por) and [Y(Pc)(Por)] [the simplified models of mixed (phthalocyaninato)(porphyrinato) rare earth(III) complexes] are studied using density functional theory (DFT) calculations. The simulated IR and Raman spectra of Y(Pc)(Por) are compared with the experimental IR spectrum of Tb(Pc)(TClPP) and Raman spectrum of Y(Pc)(TClPP), respectively, and many bands can acceptably fit in spite of the different species. On the basis of comparison with the simulated spectra of PbPc and PbPor together with the assistance of normal coordinate analysis, the calculated frequencies in their IR and Raman spectra are identified in terms of the vibrational mode of different ligand for the first time. The calculated frequency at 1048 cm−1 in the IR spectrum of [Y(Pc)(Por)] with contribution from both Pc and Por vibrational modes is the characteristic IR vibrational mode of the reduced double-decker, while the characteristic IR vibrational mode of Y(Pc)(Por) attributed from the vibration of phthalocyanine monoanion radical Pc appears at 1257 cm−1. In line with our previous experimental findings that the Raman spectra of M(Pc)(TPP) and M(Pc)(TClPP) are dominated by the Pc vibrational modes, theoretical calculations indicate that most of the Raman vibrational modes contributed from Por ring are covered up by those of Pc ring and thus are hard to be recognized in the Raman spectra of [Y(Pc)(Por)] and Y(Pc)(Por) due to their much weaker intensity in comparison with that of Pc ligand. Comparison in the IR and Raman spectra between [Y(Pc)(Por)] and Y(Pc)(Por) also suggests the localization of hole on the Pc ring in the neutral double-decker Y(Pc)(Por). The present work, representing the first detailed DFT study on the vibrational spectra of mixed (phthalocyaninato)(porphyrinato) rare earth(III) double-decker complexes, is useful in helping to understand the vibrational spectroscopic properties of this series of mixed tetrapyrrole ring complexes.  相似文献   

9.
Reaction between the optically active metal-free phthalocyanine with a pi system with noncentrosymmetrical C(2) [corrected] symmetry ((S)- and (R)-H(2){Pc(OBNP)(2)}; OBNP=binaphthylphthalocyanine) and half-sandwich complexes [M(III)(acac)(TClPP)] (M=Y, Eu; TClPP=meso-tetrakis(4-chlorophenyl)porphyrinate; acac=acetylacetonate), which were generated in situ from [M(acac)(3)].n H(2)O and H(2)(TClPP) in n-octanol at reflux, provided the first optically active protonated mixed phthalocyaninato-porphyrinato rare-earth double-decker complexes [M(III)H{Pc(OBNP)(2)}(TClPP)] (M=Y, Eu) in good yield. In addition to electronic absorption spectroscopy and magnetic circular dichroism results, circular dichroism shows different spectroscopic features of these mixed-ring rare-earth double-decker compounds in different solvents, such as DMF and CHCl(3), which was well-reproduced on the basis of time-dependent density functional theory calculation results for the yttrium species (S)-[Y(III){Pc(OBNP)(2)}(Por)](-) (Por=porphyrinate, which is obtained by removing the four chlorophenyl groups from the TClPP ligand) in terms of the change in the rotation angle between the two macrocyclic ligands in the double-decker molecules. These results revealed the solvent-dependent nature of the molecular conformation of mixed-ring rare-earth double-decker complexes, which suggests a new way of tuning the optical and the electrochemical properties of sandwich-type bis(tetrapyrrole)-metal double-decker complexes in solution by changing the solvent.  相似文献   

10.
An effective one-step approach for the preparation of (porphyrinato)(phthalocyaninato) early lanthanides of type [Br(4)TPP]Ln[(15C5)(4)Pc]Ln[Br(4)TPP], where Br(4)TPP = 5,10,15,20-tetrakis-(4-bromophenyl)-porphyrinato-ligand, (15C5)(4)Pc = tetrakis-(15-crown-5)-phthalocyaninato-ligand and Ln = La, Pr, Nd or Eu, is developed. The influence of various factors on the reaction pathway and yields of the complexes is investigated in detail. The developed protocol is found to be general for the early lanthanide subgroup. Variation of the synthetic conditions allowed the determination and isolation of possible side-products, namely heteroleptic double-deckers [Br(4)TPP]Ln[(15C5)(4)Pc] (Ln = Nd, Eu) and triple-decker [Br(4)TPP]Nd[(15C5)(4)Pc]Nd[(15C5)(4)Pc]. The peculiarities of the NMR lanthanide-induced shifts (LIS) of resonances of the synthesized triple-decker complexes are precisely investigated. The isostructurality of the synthesized complexes within the series as well as isostructurality with previously synthesized compounds is demonstrated in terms of two-nuclei analysis of LIS.  相似文献   

11.
The infra-red spectroscopic data for a series of 13 homoleptic substituted bis(phthalocyaninato) rare earth complexes with tervalent rare earths M(III)(TBPc)(2) [M=Y, Pr, ..., Lu except La, Ce and Pm; TBPc=dianion of 3(4),12(13),21(22),30(31)-tetra(tert-butyl)-phthalocyanine] have been collected with resolution of 2 cm(-1). Raman spectroscopic properties in the range of 500-1,800 cm(-1) for these double-deckers M(III)(TBPc)(2) have been collected using laser excitation sources emitting at 632.8 nm. Both the IR and Raman spectra for M(III)(TBPc)(2) are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds. For this series, the IR typical marker band of (TBPc)(-) appears as an intense absorption at 1,314-1,319 cm(-1), attributed to the pyrrole stretching. Under excitation at 632.8 nm that is in close resonance with the main Q absorption band of phthalocyanine ligand, typical Raman marker band of the monoanion radical (TBPc)(-) was observed at 1,515-1,530 cm(-1) resulting from aza CN stretching. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series.  相似文献   

12.
New heteroleptic triple-decker terbium complexes of general structure [Br(4)TPP]Tb[(15C5)(4)Pc]Tb[Br(4)TPP] (Tb-TD) and [Br(4)TPP]Tb[(15C5)(4)Pc]Tb[(15C5)(4)Pc] (Tb-TD*) (Br(4)TPP = tetrakis-meso-(4-bromophenyl)-porphyrin, (15C5)(4)Pc = tetra-(15-crown-5)-phthalocyanine) are synthesized with 48% and 57% yields, respectively. The triple-decker complexes were prepared by interaction of generated in situ terbium monoporphyrinate [Br(4)TPP]Tb(acac) and corresponding double-decker precursors. The heteroleptic double-decker precursor [Br(4)TPP]Tb[(15C5)(4)Pc] was prepared for the first time in a two step one-pot synthesis. No ligand scrambling was observed in the synthesis of Tb-TD, while 4% scrambling was determined in the case of Tb-TD*. High yields of target triple-decker complexes were achieved despite the presence of electron-donating crown-ether fragments with low thermal stability at the phthalocyanine deck. Analysis of lanthanide-induced paramagnetic shifts of protons of Tb-TD together with data of previously reported La, Pr, Nd and Eu analogues allowed precise separation of contributions of contact and dipolar lanthanide terms as well as verification of isostructurality of complexes within the series.  相似文献   

13.
Li R  Ma P  Dong S  Zhang X  Chen Y  Li X  Jiang J 《Inorganic chemistry》2007,46(26):11397-11404
A series of amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with hydrophilic poly(oxyethylene) heads and hydrophobic alkoxy tails {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8}Eu[Pc(OCnH2n + 1)8] (n = 6, 8, 10,12) (1-4) were designed and prepared from the reaction between homoleptic bis(phthalocyaninato) europium compound {Pc[(OC2H4)2OCH3]8}Eu{Pc[(OC2H4)2OCH3]8} and metal-free 2,3,9,10,16,17,23,24-octakis(alkoxy)phthalocyanine H2Pc(OCnH2n + 1)8 (n = 6, 8, 10,12) in the presence of Eu(acac)3.H2O (Hacac = acetylacetone) in boiling 1,2,4-trichlorobenzene (TCB). These novel sandwich triple-decker complexes have been characterized by a wide range of spectroscopic methods and have been electrochemically studied. With the help of the Langmuir-Blodgett (LB) technique, these typical amphiphilic triple-decker complexes have been fabricated into organic field effect transistors (OFET) with an unusual bottom contact configuration. The devices display good OFET performance with the carrier mobility for holes in the direction parallel to the aromatic phthalocyanine rings, which shows dependence on the length of the hydrophobic alkoxy side chains, decreasing from 0.46 for 1 to 0.014 cm2 V(-1) s(-1) for 4 along with the increase in the carbon number in the hydrophobic alkoxy side chains.  相似文献   

14.
Wang R  Li Y  Li R  Cheng DY  Zhu P  Ng DK  Bao M  Cui X  Kobayashi N  Jiang J 《Inorganic chemistry》2005,44(6):2114-2120
A novel one-pot procedure starting from the corresponding M(acac)3 x nH2O, metal-free phthalocyanine H2Pc', and naphthalonitrile in the presence of DBU in n-octanol has been developed to prepare heteroleptic (naphthalocyaninato)(phthalocyaninato) rare earth double-decker complexes. A series of six sandwich compounds with different naphthalocyaninato ligands, phthalocyaninato ligands, and central rare earth metals, namely, Sm[Nc(tBu)4](Pc) [Nc(tBu)4 = 3(4),12(13),21(22),30(31)-tetra(tert-butyl)naphthalocyaninato; Pc = unsubstituted phthalocyaninato] (1), Sm(Nc)(Pc') [Pc' = Pc(OC5H11)4, Pc(OC8H17)8; Nc = 2,3-naphthalocyaninato; Pc(OC5H11)4 = 2(3),9(10),16(17),24(25)-tetrakis(3-pentyloxy)phthalocyaninato; Pc(OC8H17)8 = 2,3,9,10,16,17,24,25-octakis(octyloxy)phthalocyaninato] (2, 3), and M(Nc)[Pc(alpha-OC5H11)4] [M = Sm, Eu, Y; Pc(alpha-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato] (4-6), have been isolated in good yields from this one-pot procedure demonstrating the generality of this synthetic pathway. In addition to spectroscopic analyses, the electrochemistry of these novel compounds has also been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods.  相似文献   

15.
Two novel sandwich-type mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes with decreased molecular symmetry of Cs M(Pc)[D(NHC(8)H(17))(2)PP] [M = Eu, Lu; Pc = unsubstituted phthalocyaninate; D(NHC(8)H(17))(2)PP = 5,10-di(phenyl)-15,20-di(4-octylamino-phenyl)porphyrinate] (1, 2) have been designed, prepared, and characterized. The single crystal and molecular structure of the Eu analogue has been determined by X-ray diffraction analysis, revealing the head-to-tail supramolecular chains formed from closely bound double-decker molecules depending on the N-H-N hydrogen bonds between one octyl-substituted amidocyanogen group attached at the p-position of meso-attached phenyl group of the porphyrin ligand in the mixed ring double-decker molecule and one aza-nitrogen atom of the phthalocyanine ring in the neighboring double-decker molecule in a zigzag form. Their self-assembled nano-structures have been investigated by transmission electronic microscopy (TEM) and scanning electronic microscopy (SEM). Intermolecular H-N-H hydrogen bonding interaction leads to the formation of nano-structures with fusiform morphology with 220-250 nm average width and about 10 μm length for 1 and 300 nm width and 3-5 μm length for 2, respectively, revealing the effect of molecular size in the direction perpendicular to the tetrapyrrole ring on the dimensions of self-assembled nano-structures.  相似文献   

16.
The infrared (IR) spectroscopic data for a series of 15 rare earth double-deckers M[Pc(MeOPhO)(8)](2) [M=Y, La, ..., Lu, except Pm; H(2)Pc=2, 3, 9, 10, 16, 17, 23, 24-octakis(4-methoxyphenoxy)phthalocyanine] with tervalent rare earths M(III)[Pc(MeOPhO)(8)](2) (M=Y, La, ..., Lu except Ce and Pm) and intermediate-valent cerium Ce[Pc(MeOPhO)(8)](2) have been collected with resolution of 2cm(-1). For M(III)[Pc(MeOPhO)(8)](2), typical IR marker band of the monoradical anion Pc(MeOPhO)(8)(-) shows characteristic absorption band whose frequency linearly varies in the range from 1,313 cm(-1) as a weak band for La[Pc(MeOPhO)(8)](2) to 1,324 cm(-1) as a medium band for Lu[Pc(MeOPhO)(8)](2) along with the decrease of rare earth ionic size. For Ce[Pc(MeOPhO)(8)](2), a weak band at 1,324 cm(-1) with contribution from pyrrole stretching was the marker IR band of phthalocyanine dianion Pc(2-). In conclusion, all the metal size-dependent IR absorptions should be contributed primarily from the vibrations of pyrrole, isoindole stretching, breathing or deformation or aza stretching of the Pc ring.  相似文献   

17.
The infra-red (IR) spectroscopic data for a series of twelve sandwich-type homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(octyloxy)phthalocyaninato] rare earth(III)-cadmium(II) quadruple-decker complexes [Pc(OC8H17)8]M[Pc(OC8H17)8]Cd[Pc(OC8H17)8]M[Pc(OC8H17)8] (M = Y, Pr–Yb except Pm) have been collected with resolution of 2 cm−1 and their interpretation in terms tried by analogy with the IR characteristics of bis(phthalocyaninato) cerium double-decker [Pc(OC8H17)8]Ce[Pc(OC8H17)8] in which the macrocyclic ligands exist as the phthalocyanine dianion. Similar to the bis/tris(phthalocyaninato) rare earth sandwich counterparts, all the absorptions contributed primarily by or at least containing contribution from the vibrations of pyrrole or isoindole stretching, breathing or deformation or aza stretching in the IR spectra of these quadruple-decker compounds show dependent nature on the rare earth ionic size. The shift toward higher energy direction in the frequencies of these vibrations along with the decrease of the rare earth radii reveals the effective and increasing π–π interactions in these quadruple-decker sandwich compounds in the same order. Nevertheless, the decreased sensitivity of the frequencies of the above mentioned vibration modes in particular the weak absorption band due to the isoindole stretching at 1414–1416 cm−1 for the quadruple-decker on rare earth metal size in comparison with corresponding band for bis(phthalocyaninato) rare earth counterparts indicates the relatively weaker π–π interaction in these quadruple-deckers than in the double-deckers.  相似文献   

18.
The nature of the near‐IR band in the electronic absorption spectra of bis(tetrapyrrole) rare earth(III) complexes Y(Pc)2 (1), La(Pc)2 (2), Y(Pc)(Por) (3), Y(Pc)[Pc(α‐OCH3)4] (4), Y(Pc)[Pc(α‐OCH3)8] (5), and Y(Pc)[Pc(β‐OCH3)8] (6) was studied on the basis of time‐dependent density functional theory (TD‐DFT) calculations. The electronic dipole moment along the z‐axis in the electronic transition of the near‐IR band in all the studied neutral bis(tetrapyrrole) yttrium(III) and lanthanum(III) double‐deckers is well explained on the basis of the composition analysis of the orbitals involved. The electronic transition in the near‐IR band causes the reversion of the orbital orientation of one tetrapyrrole ring in both homoleptic and heteroleptic bis(tetrapyrrole) rare earth complexes and induces electron transfer from the tetrapyrrole ring with lower orbital energy to the other ring in the heteroleptic bis(tetrapyrrole) rare earth(III) complexes. The near‐IR band can work as an ideal characteristic absorption band to reflect the π–π interaction between the two tetrapyrrole rings in bis(tetrapyrrole) rare earth(III) double‐decker complexes because of its peculiar electronic transition nature. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

19.
Reaction of heteroleptic bis(phthalocyaninato) lanthanide compounds [(Pc)M{Pc(OC8H17)8}] [H2Pc=unsubstituted phthalocyanine; H2Pc(OC8H17)8 = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine] with monomeric complexes [(Pc)M(acac)] (Hacac=acetylacetone), both of which generated in situ, led to the isolation of heteroleptic phthalocyaninato-[2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyaninato] lanthainde(III) triple-decker complexes [(Pc)M{Pc(OC8H17)8}] (M=Gd-Lu) (1-8) as the sole product. Heterodinuclear analogues [(Pc)Lu{Pc(OC8H17)8}M(Pc)] (M=Gd-Yb) (9-15) were obtained in a similar manner from the reaction of [(Pc)M{Pc(OC8H17)8}] (M=Gd-Yb) and [(Pc)Lu(acac)]. The molecular structures of the herterodinuclear compound [(Pc)Lu{Pc(OC8H17)8}Er(Pc)] (13) and its homodinuclear counterparts [(Pc)M{Pc(OC8H17)8}M(Pc)] (M=Er, Lu) (5, 8) have been determined by X-ray diffraction analysis; these structures exhibit a symmetrical molecular structure with one inner planar Pc(OC8H17)8 ligand and two outer domed Pc ligands. In addition to various spectroscopic analyses, the electrochemistry of these compounds has also been studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, revealing the gradually enhanced pi-pi interactions among the phthalocyanine rings in the triple-deckers along with the lanthanide contraction.  相似文献   

20.
Three sandwich-type (phthalocyaninato)(porphyrinato) europium triple-decker complexes, namely Eu(2)(Pc)(2)(TClPP) (1), Eu(2)[Pc(β-OC(4)H(9))(8)](2)(TClPP) (2), and Eu(2)[Pc(β-OC(8)H(17))(8)](2)(TClPP) (3), have been designed, synthesized, and fabricated into nanotubes using nanoporous anodized aluminium oxide (AAO) membrane as the template. In particular, the effects of peripheral-substituents at the two phthalocyanine ligands in the triple-decker molecule on the molecular stacking relative to the alumina surface and the molecular packing mode in the nanotubes were clarified on the basis of the scanning electron microscopy (SEM), spectroscopic, and X-ray diffraction results. High-resolution TEM (HRTEM) images, in combination with the electronic absorption and XRD results, indicate that the discotic molecules of 1 without peripheral substituent on the phthalocyanine ligands form columnar structures on the alumina surface with homeotropic molecular stacking depending on the intermolecular π-π interactions in a head-to-tail manner. In good contrast, introduction of eight long octyloxy substituents at the peripheral-positions of the phthalocyanine ligands of 3 induces an increase in the interaction of the triple-decker molecules with the alumina surface, resulting in the formation of nanotubes with discotic molecules of 3 parallel stacking relative to the alumina surface depending on the intermolecular π-π interactions in a face-to-face manner. Most interestingly, introduction of eight shorter length butyloxy substituents at the peripheral-positions of the phthalocyanine ligands of 2 leads to the formation of nanotubes with discotic molecules of 2 parallel stacking relative to the alumina surface but depending on the intermolecular π-π interactions in a head-to-tail manner. X-Ray diffraction (XRD) data confirm the above-mentioned results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号