首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

2.
In order to contribute to an understanding of the effects of thioether sulfur ligation in copper-O(2) reactivity, the tetradentate ligands L(N3S) (2-ethylthio-N,N-bis(pyridin-2-yl)methylethanamine) and L(N3S')(2-ethylthio-N,N-bis(pyridin-2-yl)ethylethanamine) have been synthesized. Corresponding copper(I) complexes, [CuI(L(N3S))]ClO(4) (1-ClO(4)), [CuI(L(N3S))]B(C(6)F(5))(4) (1-B(C(6)F(5))(4)), and [CuI(L(N3S'))]ClO(4) (2), were generated, and their redox properties, CO binding, and O(2)-reactivity were compared to the situation with analogous compounds having all nitrogen donor ligands, [CuI(TMPA)(MeCN)](+) and [Cu(I)(PMAP)](+) (TMPA = tris(2-pyridylmethyl)amine; PMAP = bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine). X-ray structures of 1-B(C(6)F(5))(4), a dimer, and copper(II) complex [Cu(II)(L(N3S))(MeOH)](ClO(4))(2) (3) were obtained; the latter possesses axial thioether coordination. At low temperature in CH(2)Cl(2), acetone, or 2-methyltetrahydrofuran (MeTHF), 1 reacts with O(2) and generates an adduct formulated as an end-on peroxodicopper(II) complex [{Cu(II)(L(N3S))}(2)(mu-1,2-O(2)(2-))](2+) (4)){lambda(max) = 530 (epsilon approximately 9200 M(-1) cm(-1)) and 605 nm (epsilon approximately 11,800 M(-1) cm(-1))}; the number and relative intensity of LMCT UV-vis bands vary from those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {lambda(max) = 524 nm (epsilon = 11,300 M(-1) cm(-1)) and 615 nm (epsilon = 5800 M(-1) cm(-1))} and are ascribed to electronic structure variation due to coordination geometry changes with the L(N3S) ligand. Resonance Raman spectroscopy confirms the end-on peroxo-formulation {nu(O-O) = 817 cm(-1) (16-18O(2) Delta = 46 cm(-1)) and nu(Cu-O) = 545 cm(-1) (16-18O(2) Delta = 26 cm(-1)); these values are lower in energy than those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {nu(Cu-O) = 561 cm(-1) and nu(O-O) = 827 cm(-1)} and can be attributed to less electron density donation from the peroxide pi* orbitals to the Cu(II) ion. Complex 4 is the first copper-dioxygen adduct with thioether ligation; direct evidence comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 Angstrom}. Following a [Cu(I)(L(N3S))](+)/O(2) reaction and warming, the L(N3S) thioether ligand is oxidized to the sulfoxide in a reaction modeling copper monooxygenase activity. By contrast, 2 is unreactive toward dioxygen probably due to its significantly increased Cu(II)/Cu(I) redox potential, an effect of ligand chelate ring size (in comparison to 1). Discussion of the relevance of the chemistry to copper enzyme O(2)-activation, and situations of biological stress involving methionine oxidation, is provided.  相似文献   

3.
The reaction of Cu(ClO(4))(2).6H(2)O with the new tripodal ligand HNpy(2)pz (N-bis[(pyridin-2-yl)methyl][1H-pyrazol-3-yl)methyl]amine) in the presence of 1 equiv of triethylamine results in the formation of a doubly pyrazolato-bridged dicopper(II) complex, [Cu(Npy(2)pz)](2)(ClO(4))(2).2CH(3)CN (1). The crystal structure of 1 was determined by X-ray crystallography and was found to consist of two nearly identical discrete dinuclear molecules with bis(pyrazolato) bridges. The copper(II) ion has a trigonal bipyramid geometry achieved by the coordination of an aliphatic nitrogen, two pyridine moieties, and two pyrazolato nitrogens. Variable temperature-dependent magnetic data show that antiferromagnetic interactions operate in 1 as a result of the binding angle of the pyrazolato bridge. In solution, the stability of the dinuclear cation, [Cu(py(2)pz)](2)(2+), is highly dependent on the concentration, as indicated by ESI-MS, ligand field, cyclic voltammetry, EPR, and (1)H NMR studies.  相似文献   

4.
The structure and H(2)O(2)-reactivity of a series of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine (TPA) derivatives having a phenyl group at the 6-position of pyridine donor group(s) [(6-phenylpyridin-2-yl)methyl]bis[(pyridin-2-yl)methyl]amine (Ph(1)TPA), bis[(6-phenylpyridin-2-yl)methyl][(pyridin-2-yl)methyl]amine (Ph(2)TPA), and tris[(6-phenylpyridin-2-yl)methyl]amine (Ph(3)TPA) have systematically been examined to get insights into the aromatic substituent (6-Ph) effects on the coordination chemistry of TPA ligand system. The X-ray crystallographic analyses have revealed that [Cu(II)(TPA)(CH(3)CN)](ClO(4))(2) (CuTPA) and [Cu(II)(Ph(3)TPA)(CH(3)CN)](ClO(4))(2) (3) exhibit a trigonal bipyramidal structure, whereas [Cu(II)(Ph(1)TPA)(CH(3)CN)](ClO(4))(2) (1) shows a slightly distorted square pyramidal structure and [Cu(II)(Ph(2)TPA)(CH(3)CN)](ClO(4))(2) (2) has an intermediate structure between trigonal bipyramidal and square pyramidal. On the other hand, the UV-vis and ESR data have suggested that all the copper(II) complexes have a similar trigonal bipyramidal structure in solution. The redox potentials of CuTPA, 1, 2, and 3 have been determined as E(1/2) = -0.34, -0.28, -0.16, and -0.04 mV vs Ag/AgNO(3), respectively, demonstrating that introduction of each 6-Ph group causes positive shift of E(1/2) about 0.1 V. Notable difference in H(2)O(2)-reactivity has been found among the copper(II) complexes. Namely, CuTPA and 1 afforded mononuclear copper(II)-hydroperoxo complexes CuTPA-OOH and 1-OOH, respectively, whereas complex 2 provided bis(mu-oxo)dicopper(III) complex 2-oxo. On the other hand, copper(II) complex 3 was reduced to the corresponding copper(I) complex 3(red). On the basis of the H(2)O(2)-reactivity together with the X-ray structures and the redox potentials of the copper(II) complexes, the substituent effects of 6-Ph are discussed in detail.  相似文献   

5.
Triazacyclononane (TACN) was coupled to glycine (L(Gly)), alanine (L(Ala)), and phenylalanine (L(Phe)) via standard solution phase peptide coupling techniques. Copper(II) complexes of these new ligand-amino acid conjugates, [(CuL(Gly))(2)](ClO(4))(4) (1), [(CuL(Ala))(2)Cl](ClO(4))(3) (2), and [Cu(2)L(Phe)Cl(4)] (3), were synthesized and characterized. The X-ray crystal structures of 2 and 3 were determined. Complex 2 is a dimeric species where L(Ala) bridges between copper ions via its two TACN amine nitrogen atoms to one copper while the Ala terminal amine and carbonyl oxygen bind to the other copper. Complex 3 is bimetallic but only contains one L(Phe) ligand that bridges between the copper ions.  相似文献   

6.
By using the neutral bidentate nitrogen-containing ligand, bis(3,5-diisopropyl-1-pyrazolyl)methane (L1' '), the copper(I) complexes [Cu(L1' ')2](CuCl2) (1CuCl2), [Cu(L1' ')2](ClO4) (1ClO4), [Cu(L1' ')]2(ClO4)2 (2ClO4), [Cu(L1' ')]2(BF4)2 (2BF4), [Cu(L1' ')(NCMe)](PF6) (3PF6), [Cu(L1' ')(PPh3)](ClO4) (4ClO4), [Cu(L1' ')(PPh3)](PF6) (4PF6), [{Cu(L1' ')(CO)}2(mu-ClO4)](ClO4) (5ClO4), and the copper(II) complexes [{Cu(L1' ')}2(mu-OH)2(mu-ClO4)2] (6), and [Cu(L1' ')Cl2] (7) were systematically synthesized and fully characterized by X-ray crystallography and by IR and 1H NMR spectroscopy. In the case of copper(II), ESR spectroscopy was also applied. In comparison with the related neutral tridentate ligand L1', bis-chelated copper(I) complexes and binuclear linear-coordinated copper(I) complexes are easy to obtain with L1' ', like 1CuCl2, 1ClO4, 2ClO4, and 2BF4. Importantly, stronger and bulkier ligands such as acetonitrile (3PF6) and especially triphenylphosphine (4ClO4 and 4PF6) generate three-coordinate structures with a trigonal-planar geometry. Surprisingly, for the smaller ligand carbon monoxide, a mononuclear three-coordinate structure is very unstable, leading to the formation of a binuclear complex (5ClO4) with one bridging perchlorate anion, such that the copper(I) centers are four-coordinate. The same tendency is observed for the copper(II) bis(mu-hydroxo) compounds 6, which is additionally bridged by two perchlorate anions. Both copper(II) complexes 6 and 7 were obtained by molecular O2 oxidation of the corresponding copper(I) complexes. A comparison of the new copper(I) triphenylphosphine complexes 4ClO4 and 4PF6 with corresponding species obtained with the related tridentate ligands L1' and L1 (8ClO4 and 9, respectively) reveals surprisingly small differences in their spectroscopic properties. Density functional theory (DFT) calculations are used to shed light on the differences in bonding in these compounds and the spectral assignments. Finally, the reactivity of the different bis(pyrazolyl)methane complexes obtained here toward PPh3, CO, and O2 is discussed.  相似文献   

7.
Two 2,6-bispyrazolylpyridine ligands (bpp) were functionalized with pyrene moieties through linkers of different lengths. In the ligand 2,6-di(1H-pyrazol-1-yl)-4-(pyren-1-yl)pyridine (L1) the pyrene group is directly connected to the bpp moiety via a C-C single bond, while in the ligand 4-(2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)benzyl-4-(pyren-1-yl)butanoate (L2) it is separated by a benzyl ester group involving a flexible butanoic chain. Subsequent complexation of Fe(II) salts revealed dramatic the influence of the nature of the pyrene substitution on the spin-transition behaviour of the resulting complexes. Thus, compound [Fe(L1)(2)](ClO(4))(2) (1) is blocked in its high spin state due to constraints caused by a strong intermolecular π-π stacking in its structure. On the other hand, the flexible chain of ligand L2 in compounds [Fe(L2)(2)](ClO(4))(2) (2) and [Fe(L2)(2)](BF(4))(2)·CH(3)CN·H(2)O (3) prevents structural constraints allowing for reversible spin transitions. Temperature-dependent studies of the photophysical properties of compound 3 do not reveal any obvious correlation between the fluorescence of the pyrene group and the spin state of the spin transition core.  相似文献   

8.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

9.
Gold(I) complexes of imidazole and thiazole-based diphos type ligands were prepared and their potential as chemotherapeutics investigated. Depending on the ligands employed and the reaction conditions complexes [L(AuCl)(2)] and [L(2)Au]X (X = Cl, PF(6)) are obtained. The ligands used are diphosphanes with azoyl substituents R(2)P(CH(2))(2)PR(2) {R = 1-methylimidazol-2-yl (1), 1-methylbenzimidazol-2-yl (4), thiazol-2-yl (5) and benzthiazol-2-yl (6)} as well as the novel ligands RPhP(CH(2))(2)PRPh {R = 1-methylimidazol-2-yl (3)} and R(2)P(CH(2))(3)PR(2) {R = 1-methylimidazol-2-yl (2)}. The cytotoxic activity of the complexes was assessed against three human cancer cell lines and a rat hepatoma cell line and correlated to the lipophilicity of the compounds. The tetrahedral gold complexes [(3)(2)Au]PF(6) and [(5)(2)Au]PF(6) with intermediate lipophilicity (logD(7.4) = 0.21 and 0.25) showed significant cytotoxic activity in different cell lines. Both compounds induce apoptosis and inhibit the enzymes thioredoxin reductase and glutathione reductase.  相似文献   

10.
Copper(II) complexes of the potentially tripodal N,N,O ligand 3,3-bis(1-methylimidazol-2-yl)propionate (L1) and its conjugate acid HL1 have been synthesised and structurally and spectroscopically characterised. The reaction of equimolar amounts of ligand and CuII resulted in the complexes [Cu(L1)]n(X)n (X=OTf-, PF6(-); n=1,2), for which a new bridging coordination mode of L1 is inferred. Although these complexes showed moderate catecholase activity in the oxidation of 3,5-di-tert-butylcatechol, surprising reactivity with the pseudo-substrate tetrachlorocatechol was observed. A chloranilato-bridged dinuclear CuII complex was isolated from the reaction of [Cu(L1)]n(PF6)n with tetrachlorocatechol. This stoichiometric oxidative double dehalogenation of tetrachlorocatechol to chloranilic acid by a biomimetic copper(II) complex is unprecedented. The crystal structure of the product, [Cu2(ca)Cl2(HL1)2], shows a bridging bis-bidentate chloranilato (ca) ligand and ligand L1 coordinated as its conjugate acid (HL1) in a tridentate fashion. Magnetic susceptibility studies revealed weak antiferromagnetic coupling (J= -35 cm(-1)) between the two copper centres in the dinuclear complex. Dissolution of the green complex [Cu2(ca)Cl2(HL1)2] resulted in the formation of new pink-purple mononuclear compound [Cu(ca)(HL1)(H2O)], the crystal structure of which was determined. It showed a terminal bidentate chloranilato ligand and N,N-bidentate coordination of ligand HL1, which illustrates the flexible coordination chemistry of ligand L1.  相似文献   

11.
Three copper(II) complexes, 1, 2, and 3 with L(1), L(2) and L(3) [L(1) = 2-(2-aminoethyl)-pyridine; L(2) = 2-(N-ethyl-2-aminoethyl)-pyridine; L(3) = 3,3'-iminobis(N,N-dimethylpropylamine)], respectively, were synthesized and characterized. Addition of nitric oxide gas to the degassed acetonitrile solution of the complexes were found to result in the reduction of the copper(II) center to copper(I). In cases of complexes 1 and 2, the formation of the [Cu(II)-NO] intermediate prior to the reduction of Cu(II) was evidenced by UV-visible, solution FT-IR and X-band EPR spectroscopic studies. However, for complex 3, the formation of [Cu(II)-NO] has not been observed. DFT calculations on the [Cu(II)-NO] intermediate generated from complex 1 suggest a distorted square pyramidal geometry with the NO ligand coordinated to the Cu(II) center at an equatorial site in a bent geometry. In the case of complex 1, the reduction of the copper(II) center by nitric oxide afforded ligand transformation through diazotization at the primary amine site in acetonitrile solution; whereas, in an acetonitrile-water mixture, it resulted in 2-(pyridine-2-yl)ethanol. On the other hand, in cases of complexes 2 and 3, it was found to yield N-nitrosation at the secondary amine site in the ligand frameworks. The final organic products, in each case, were isolated and characterized by various spectroscopic studies.  相似文献   

12.
Four mixed-ligand copper(II) complexes containing the rigid bidentate nitrogen ligand bis[N-(p-tolyl)imino]acenaphthene (abb. p-Tol-BIAN) ligand are reported. These complexes, namely [Cu(p-Tol-BIAN)(2)](ClO(4))(2)1, [Cu(p-Tol-BIAN)(acac)](ClO(4)) 2, [Cu(p-Tol-BIAN)Cl(2)] 3 and [Cu(p-Tol-BIAN)(AcOH)(2)](ClO(4))(2)4 (where acac, acetylacetonate and AcOH, acetic acid) have been prepared and characterized by elemental analysis, spectroscopic, magnetic and molar conductance measurements. ESR spectra suggest a square planar geometry for complexes 1 and 2. In complexes 3 and 4, a distorted tetrahedral arrangement around copper(II) centre was suggested. Solvatochromic behavior of all studied complexes indicates strong solvatochromism of their solutions. The observed solvatochromism is mainly due to the solute-solvent interaction between the chelate cation and the solvent molecules. Thermal properties and decomposition kinetics of all complexes are investigated. The kinetic parameters (E, A, Delta H, Delta S and Delta G) of all thermal decomposition stages have been calculated using the Coats-Redfern and other standard equations.  相似文献   

13.
Three new metal-coordinating ligands, L(1)·4HCl [1-(2-guanidinoethyl)-1,4,7-triazacyclononane tetrahydrochloride], L(2)·4HCl [1-(3-guanidinopropyl)-1,4,7-triazacyclononane tetrahydrochloride], and L(3)·4HCl [1-(4-guanidinobutyl)-1,4,7-triazacyclononane tetrahydrochloride], have been prepared via the selective N-functionalization of 1,4,7-triazacyclononane (tacn) with ethylguanidine, propylguanidine, and butylguanidine pendants, respectively. Reaction of L(1)·4HCl with Cu(ClO(4))(2)·6H(2)O in basic aqueous solution led to the crystallization of a monohydroxo-bridged binuclear copper(II) complex, [Cu(2)L(1)(2)(μ-OH)](ClO(4))(3)·H(2)O (C1), while for L(2) and L(3), mononuclear complexes of composition [Cu(L(2)H)Cl(2)]Cl·(MeOH)(0.5)·(H(2)O)(0.5) (C2) and [Cu(L(3)H)Cl(2)]Cl·(DMF)(0.5)·(H(2)O)(0.5) (C3) were crystallized from methanol and DMF solutions, respectively. X-ray crystallography revealed that in addition to a tacn ring from L(1) ligand, each copper(II) center in C1 is coordinated to a neutral guanidine pendant. In contrast, the guanidinium pendants in C2 and C3 are protonated and extend away from the Cu(II)-tacn units. Complex C1 features a single μ-hydroxo bridge between the two copper(II) centers, which mediates strong antiferromagnetic coupling between the metal centers. Complexes C2 and C3 cleave two model phosphodiesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenylphosphate (HPNPP), more rapidly than C1, which displays similar reactivity to [Cu(tacn)(OH(2))(2)](2+). All three complexes cleave supercoiled plasmid DNA (pBR 322) at significantly faster rates than the corresponding bis(alkylguanidine) complexes and [Cu(tacn)(OH(2))(2)](2+). The high DNA cleavage rate for C1 {k(obs) = 1.30 (±0.01) × 10(-4) s(-1) vs 1.23 (±0.37) × 10(-5) s(-1) for [Cu(tacn)(OH(2))(2)](2+) and 1.58 (±0.05) × 10(-5) s(-1) for the corresponding bis(ethylguanidine) analogue} indicates that the coordinated guanidine group in C1 may be displaced to allow for substrate binding/activation. Comparison of the phosphate ester cleavage properties of complexes C1-C3 with those of related complexes suggests some degree of cooperativity between the Cu(II) centers and the guanidinium groups.  相似文献   

14.
An improved synthesis of lithium phenyltris(methimazolyl)borate, Li[PhTm(Me)], (methimazole = 1-methylimidazole-2-thione) is described, and the structure of the methanol-solvated [Li(OHMe)4][PhTm(Me)] has been determined. The syntheses and characterization of complexes [M(PhTm(Me))(PR3)] (M = Cu, Ag, Au; R = Et, Ph;) are reported, and the complexes [Cu(PhTm(Me))(PPh3)], [Ag(PhTm(Me))(PEt3)] and [Au(PhTm(Me))(PEt3)] are crystallographically characterized, showing a progression from pseudo-tetrahedral geometry (copper, S3P coordination) to trigonal planar geometry (silver, S2P coordination) to linear geometry (gold, SP coordination). In addition, the copper(I) and silver(I) triphenylphosphine complexes of the adventitiously formed phenylhydrobis(methimazolyl)borate ligand, [M(PhBm(Me))(PPh3)], have been crystallographically characterized, showing both species to have a trigonal planar primary coordination sphere, with a secondary M...H-B interaction. Finally, reaction of copper(II) chloride with Li[PhTm(Me)] results in formation of a compound analyzing as [Cu(II)(PhTm(Me))Cl], although its extreme insolubility and marked instability have precluded its complete characterization. Attempts to prepare this by ultra-slow diffusion of the reactants through solvent blanks has led to isolation of a mixed-valence copper(I/II) methimazolate cluster, [Cu(I)10Cu(II)2(mt)12Cl2] and a copper(I) dimeric complex [Cu2(PhTm(Me))2], indicating that copper(II) ions oxidatively decompose the phenyltris(methimazolyl)borate anion.  相似文献   

15.
Russian Journal of Coordination Chemistry - New water-soluble copper(II) bis-N,O-chelate complexes [Cu(L2)2Cl2] (I), [Cu2(L1)2Cl4] (II), and [Cu(L1)2Cl]2[CuCl4] (III) (L1, L2 = pyridyl-containing...  相似文献   

16.
Reaction of potassium tris(mercapto-tert-butylpyridazinyl)borate K[Tn(tBu)] with copper(II) chloride in dichloromethane at room temperature led to the diamagnetic copper boratrane compound [Cu{B(Pn(tBu))(3)}Cl] (Pn = pyridazine-3-thionyl) (1) under activation of the B-H bond and formation of a Cu-B dative bond. In contrast to this, stirring of the same ligand with copper(I) chloride in tetrahydrofuran (THF) gave the dimeric compound [Cu{Tn(tBu)}](2) (2) where one copper atom is coordinated by two sulfur atoms and one hydrogen atom of one ligand and one sulfur of the other ligand. Hereby, no activation of the B-H bond occurred but a 3-center-2-electron B-H···Cu bond is formed. The reaction of copper(II) chloride with K[Tn(tBu)] in water gave the same product 2, but a formal reduction of the metal center from Cu(II) to Cu(I) occurred. When adding tricyclohexyl phosphine to the reaction mixture of K[Tn(R)] (R = tBu, Me) and copper(I) chloride in MeOH, the distorted tetrahedral Cu complexes [Cu{Tn(R)}(PCy(3))] (R = tBu 3, Me 4) were formed. Compound 4 is exhibiting an "inverted" κ(3)-H,S,S, coordination mode. The copper boratrane 1 was further investigated by density functional theory (DFT) calculations for a better understanding of the M→B interaction involving the d(8) electron configuration of Cu.  相似文献   

17.
A new sugar-derived Schiff's base ligand N-(3-tert-butyl-2-hydroxybenzylidene)-4,6-O-ethylidene-beta-D-glucopyranosylamine (H3L1) has been developed which afforded the coordinatively labile, alcoholophilic trinuclear Cu(II) complex [Cu3(L1)2(CH3OH)(H2O)] (1). Complex 1 has been further used in the synthesis of a series of alcohol-bound complexes with a common formula of [Cu3(L1)2(ROH)2] (R = Me (2), Et (3), nPr (4), nBu (5), nOct (6)). X-ray structural analyses of complexes 2-6 revealed the collinearity of trinuclear copper(II) centers with Cu-Cu-Cu angles in the range of 166-172 degrees . The terminal and central coppers are bound with NO3 and O4 atoms, respectively, and exhibit square-planar geometry. The trinuclear structures of 2-6 can be viewed as the two {Cu(L1)}- fragments capture a copper(II) ion in the central position, which is further stabilized by a hydrogen-bonding interaction between the alcohol ligands and the sugar C-3 alkoxo group. Complex 2 exhibits a strong antiferromagnetic interaction between the Cu(II) ions (J = -238 cm(-1)). Diffusion of methanol into a solution of complex 1 in a chloroform/THF mixed solvent afforded the linear trinuclear complex [Cu(3)(L1)2(CH3OH)2(THF)2] (7). The basic structure of 7 is identical to complex 2; however, THF binding about the terminal coppers (Cu-O(THF) = 2.394(7) and 2.466(7) A) has introduced the square-pyramidal geometry, indicating that the planar trinuclear complexes 2-6 are coordinatively unsaturated and the terminal metal sites are responsible for further ligations. In the venture of proton-transfer reactions, a successful proton transfer onto the saccharide C-3 alkoxo group has been achieved using 4,6-O-ethylidene-d-glucopyranose, resulting in the self-assembled tetranuclear complex, [Cu4(HL1)4] (8), consisting of the mononuclear Cu(II) chiral building blocks, {Cu(HL1)}.  相似文献   

18.
Arene ruthenium(II) complexes containing bis(pyrazolyl)methane ligands have been prepared by reacting the ligands L' (L' in general; specifically L(1) = H(2)C(pz)(2), L(2) = H(2)C(pz(Me2))(2), L(3) = H(2)C(pz(4Me))(2), L(4) = Me(2)C(pz)(2) and L(5) = Et(2)C(pz)(2) where pz = pyrazole) with [(arene)RuCl(mu-Cl)](2) dimers (arene = p-cymene or benzene). When the reaction was carried out in methanol solution, complexes of the type [(arene)Ru(L')Cl]Cl were obtained. When L(1), L(2), L(3), and L(5) ligands reacted with excess [(arene)RuCl(mu-Cl)](2), [(arene)Ru(L')Cl][(arene)RuCl(3)] species have been obtained, whereas by using the L(4) ligand under the same reaction conditions the unexpected [(p-cymene)Ru(pzH)(2)Cl]Cl complex was recovered. The reaction of 1 equiv of [(p-cymene)Ru(L')Cl]Cl and of [(p-cymene)Ru(pzH)(2)Cl]Cl with 1 equiv of AgX (X = O(3)SCF(3) or BF(4)) in methanol afforded the complexes [(p-cymene)Ru(L')Cl](O(3)SCF(3)) (L' = L(1) or L(2)) and [(p-cymene)Ru(pzH)(2)Cl]BF(4), respectively. [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) formed when [(p-cymene)Ru(L(1))Cl]Cl reacts with an excess of AgPF(6). The solid-state structures of the three complexes, [(p-cymene)Ru{H(2)C(pz)(2)}Cl]Cl, [(p-cymene)Ru{H(2)Cpz(4Me))(2)}Cl]Cl, and [(p-cymene)Ru{H(2)C(pz)(2)}Cl](O(3)SCF(3)), were determined by X-ray crystallographic studies. The interionic structure of [(p-cymene)Ru(L(1))Cl](O(3)SCF(3)) and [(p-cymene)Ru(L')Cl][(p-cymene)RuCl(3)] (L' = L(1) or L(2)) was investigated through an integrated experimental approach based on NOE and pulsed field gradient spin-echo (PGSE) NMR experiments in CD(2)Cl(2) as a function of the concentration. PGSE NMR measurements indicate the predominance of ion pairs in solution. NOE measurements suggest that (O(3)SCF(3))(-) approaches the cation orienting itself toward the CH(2) moiety of the L(1) (H(2)C(pz)(2)) ligand as found in the solid state. Selected Ru species have been preliminarily investigated as catalysts toward styrene oxidation by dihydrogen peroxide, [(p-cymene)Ru(L(1))(H(2)O)][PF(6)](2) being the most active species.  相似文献   

19.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

20.
A series of copper(II) and copper(I) complexes have been synthesized with ligands combining 6-methyl-2,2'-bipyridines with cyclotriveratrylene (CTV) (1) and with catechol (2). The electrochemical, (1)H NMR, and mass spectrometry characterizations of these complexes are described and discussed. The six pendant bipyridines of ligand 1 allow for the formation of two trinuclear copper(I) complexes [(1)Cu(3)](BF(4))(3) differing only in the conformation "vic" or "int" adopted by the ligand to fit the tetrahedral cuprous ions. Similarly, 1 generates two trinuclear copper(II) complexes in which the conformation of the ligand fits the square planar geometry of cupric ions. In both the cuprous and cupric complexes, a conformational equilibrium exists. Ligand 2 bearing two methylbipyridines has proven to be a useful model of the coordinating sites of ligand 1. In this case, two homologous copper(I) complexes are obtained, [(2)Cu]BF(4) and [(2)(2)Cu(2)](BF(4))(2), modeling respectively two possible coordination conformations of ligand 1. With copper(II), ligand 2 yields only one complex [(2)Cu](CF(3)SO(3))(2), which allows for the unambiguous identification of the conformations observed for ligand 1 complexes. The different coordinating modes of ligand 1 in the complexes mentioned are in exchange but exhibit different physical properties, thus representing a new bistable system based on conformational isomerism which exhibits an electrochemical potential hysteresis. An equilibrium constant and thermodynamic data were obtained for this system by variable-temperature cyclic voltammetry. The influence of coordinating vs noncoordinating solvents was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号