首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Despite the structural similarity, MgO is fast dissolving in low pH solution, whereas NiO is slow dissolving under the same conditions. In addition, the planar MgO (100) surface immediately reconstructs to form pits and protrusions, whereas this behavior has not been observed with NiO (100). Our previous study, using the semiempirical self-consistent field molecular orbital (SCFMO) method MSINDO showed that it was possible for MgO dissolution but not NiO dissolution to occur via the migration of a metal-oxygen pair to an ex situ position. However, we have now found a more energetically favorable and realistic dissolution mechanism involving the dissociation of a water molecule (adsorbed on a metal site) prior to migration. Products from this dissociation (H and OH) weaken adjacent metal-oxygen bonds. Dissociation of a second adsorbed water molecule is required to complete the process. For both oxides, the energy barrier determined from the energy profile of the metal-oxygen pair migration was found to be lower than the activation energy of water dissociation at the planar surface as reported in previous study. This would suggest that the dissociation of water molecules at the planar surface is rate-determining in the surface restructuring step of dissolution. It was demonstrated that surface restructuring and dissolution of MgO is possible whereas highly improbable for NiO, in agreement with experimental observations.  相似文献   

2.
使用基于密度泛函理论(DFT)的DMol^3量子力学计算程序模块,采用Ni(211)周期性模型表达镍表面上的单原子台阶结构,计算出CHx(x=0~4)在Ni(211)模型不同活性位上的吸附能和空间构型,并使用LST/QST方法找到了台阶结构上CHx(x=1~4)的解离路径、过渡态和相应的能量数据.计算结果表明,金属表面台阶结构较平台结构更有利于CHx物种的吸附.台阶结构上存在能够降低CHx解离活化能的活性位.处于台阶结构上的特定位置时,CH4解离全过程的关键步骤-CH4和CH解离的活化能会大幅降低。  相似文献   

3.
The adsorption of water on a Ni(111) single crystal surface, clean as well as precovered with oxygen, has been investigated with thermal desorption spectroscopy (TDS) and measurements of the adsorption-desorption equilibrium combined with XPS (X-ray photoelectron spectroscopy). The measurements have been carried out with water pressures up to 10–5 mbar on surfaces, which have been either clean or precovered with oxygen. On the clean Ni(111) surface the first adsorbate layer with a maximum coverage of 0.42 ML (monolayers) has a desorption energy of 52 kJ/mol and a preexponential factor of desorption of 1016s–1. A second water layer adsorbs with the desorption energy of the ice multilayer but with first order kinetics. On Ni(111) precovered with chemisorbed oxygen an additional state of molecular, more strongly bound water is found, but no dissociation. For higher oxygen precoverages where NiO islands are formed on the surface, also the water dissociation product OH is found adsorbed. On a sample covered with a closed NiO layer, adsorbed OH and molecular water in an energetically not well-defined state are found. High doses of water on oxygen-precovered Ni(111) induce a slow surface modification leading to water dissociation.  相似文献   

4.
The ground-state potential energy surface (PES) in the gas-phase H2/CO2/Ni(3D) system is investigated at the CCSD(T)//B3LYP/6-311+G(2d,2p) levels in order to explore the possible reaction mechanism of the reverse water gas shift reaction catalyzed by Ni(3D). The calculations predict that the C-O bond cleavage of CO2 assisted by co-interacted H2 is prior to the dissociation of the H2, and the most feasible reaction path for Ni(3D) + H2 + CO2 --> Ni(3D) + H2O + CO is endothermic by 12.5 kJ mol(-1) with an energy barrier of 103.9 kJ mol(-1). The rate-determining step for the overall reaction is predicted to be the hydrogen migration with water formation. The promotion effect of H2 on the cleavage of C-O bond in CO2 is also discussed and compared with the analogous reaction of Ni(3D) + CO2 --> NiO + CO, and the difference between triplet and singlet H2/CO2/Ni systems is also discussed.  相似文献   

5.
Reduction of an oxide in hydrogen is a method frequently employed in the preparation of active catalysts and electronic devices. Synchrotron-based time-resolved X-ray diffraction (XRD), X-ray absorption fine structure (NEXAFS/EXAFS), photoemission, and first-principles density-functional (DF) slab calculations were used to study the reaction of H(2) with nickel oxide. In experiments with a NiO(100) crystal and NiO powders, oxide reduction is observed at atmospheric pressures and elevated temperatures (250-350 degrees C), but only after an induction period. The results of in situ time-resolved XRD and NEXAFS/EXAFS show a direct NiO-->Ni transformation without accumulation of any intermediate phase. During the induction period, surface defect sites are created that provide a high efficiency for the dissociation of H(2). A perfect NiO(100) surface, the most common face of nickel oxide, exhibits a negligible reactivity toward H(2). The presence of O vacancies leads to an increase in the adsorption energy of H(2) and substantially lowers the energy barrier associated with the cleavage of the H-H bond. At the same time, adsorbed hydrogen can induce the migration of O vacancies from the bulk to the surface of the oxide. A correlation is observed between the concentration of vacancies in the NiO lattice and the rate of oxide reduction. These results illustrate the complex role played by O vacancies in the mechanism for reduction of an oxide. The kinetic models frequently used to explain the existence of an induction time during the reduction process can be important, but a more relevant aspect is the initial production of active sites for the rapid dissociation of H(2).  相似文献   

6.
The DFT-PW91 slab model approach is employed to investigate the influence of aggregation, surface defects, and contaminant oxygen on water dissociation on Cu(110) at low temperatures. The dissociation barriers of water in various aggregate states are calculated in the range of 60-75 kJ/mol on the clean surfaces, in nice agreement with the experimentally determined values. It is revealed that the aggregation of water shows no propensity to reduce the activation barrier for the O-H bond breaking on Cu(110), at variance with the water chemistry on Ru(0001). The calculated activation energy on Cu(211) which is the most active stepped surface investigated is equal to the value on the (110) surface, indicating that the hydroxyl groups observed on Cu(110) at low temperatures may not stem from surface defects. The coadsorbed oxygen, whether as a "spectator" or a "participant," facilitates the water dissociation both kinetically and thermodynamically.  相似文献   

7.
Low-coordinated (LC) ions at the MgO surface (noted Mg2+LC and O2-LC with L = 1-5), located on monatomic and diatomic steps, corners, step divacancies, and kinks, have been modeled thanks to periodic density functional theory (DFT) calculations (VASP). Ions of lowest coordination induce the strongest surface geometry relaxation and the highest surface energies. The hydration energies of these sites and thermodynamic stabilities of the resulting surfaces were studied. The factors controlling the interaction strength between water and the surface are the possibility for the hydroxyl group to adopt a bridging geometry between two Mg2+ cations in concave areas of the surface, such as the bottom of the monatomic step, and at second order the surface atomic coordination, and especially the presence of three-coordinated ions. The Lewis basicity and acidity of O2-LC and Mg2+LC, respectively, increase as their coordination number decreases, which implies the same trend for the Br?nsted basicity of the Mg2+-O2- pair toward water. However, this trend can be changed if pairs leading to the formation of bridging OH groups are involved, typically on monatomic steps or in step divacancies where O2C-H and O3C-H are obtained, respectively, instead of the expected O1C-H. Thanks to thermodynamic calculations, the state of the surface as a function of temperature can be determined at a given pressure, unraveling the roles of surface topology and ions coordination.  相似文献   

8.
使用密度泛函理论研究了Pd掺杂的Ni(111),Ni(100)和Ni(211)表面最稳定的结构,同时考察了干净的和Pd掺杂的Ni表面催化CH4解离反应的活性.结果表明,由Pd原子取代最外层Ni原子而形成的表面Pd掺杂的Ni表面在热力学上最为稳定,亚表面Pd掺杂的Ni表面在热力学上都不稳定; 而对于表面Pd吸附的Ni表面,只有Pd/Ni(211)表面是稳定的.表面掺杂的Pd/Ni表面上CH4解离中间体(CH4,CH3,CH,C,H)吸附能的计算结果表明,Pd的掺杂在不同程度上减弱了除CH4之外各解离中间体的吸附能.另外,CH4和CH均优先在Ni(211)和Pd/Ni(211)台阶面上解离,其次是在比较开阔的Ni(100)和Pd/Ni(100)表面上.Pd的掺杂不同程度上提高了CH4和CH解离的能垒,对于活性最高的Ni(211)面,Pd的掺杂使得CH脱氢的能垒较CH4脱氢的高,改变了其速率控制步骤,从而抑制了积碳的生成.  相似文献   

9.
Oxygen dissociation reaction on gold, palladium, and gold‐palladium core/shell nanoparticles was investigated with plane wave basis set, density functional theory. Bader population analysis of charge and electron distribution was employed to understand the change of catalytic activity as a function of the nanopaticle composition. The nanoparticles’ electronic properties were investigated and the degree of core/shell charge polarization was estimated for each composition. It was found that surface polarization plays an important role in the catalysis of the initial step of electrophile reactions such as oxygen dissociation. We have investigated the O2 adsorption energy on each nanoparticle and the activation barrier for the oxygen dissociation reaction as a function of the nanoparticle structure. Furthermore, we have investigated the influence of surface geometry, that is., surface bond lengths on the catalytic activity. We have compared the electronic and the geometry effects on the oxygen activation and dissociation. Our design rules for core/shell nanoparticles offer an effective method for control of the surface catalytic activity. Palladium and gold are often used as catalysts in synthetic chemistry. First‐principles calculations elucidate the mechanisms that control the surface reactivity of gold, palladium, and gold‐palladium core shell nanoparticles in oxygen dissociation reactions. Oxygen dissociation is promoted on the gold surface of gold/palladium core‐shell nanoparticles by favorable electron transfer from the core to the shell. Such core‐shell electronic effects can be used for fine‐tuning the nanoparticles catalytic activity.  相似文献   

10.
Results from quantum chemical calculations of the structural, electronic, and energy characteristics of the chemisorption of water on a diamond C(100)-(2 × 1) surface with a vacancy defect are presented. The metastable state of the surface with an adsorbed H2O molecule and possible configurations of the surface with adsorbed -H and -OH water dissociation fragments are described. It is shown that the presence of a vacancy on the surface decreases the activation energy of the dissociative adsorption of a water molecule.  相似文献   

11.
Periodically stepped NiO(100) surfaces were prepared and characterized with low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). Two vicinal NiO(100) single-crystal samples were cut, oriented, and polished with regular, repeating monatomic steps in six-atom or seven-atom terrace widths. LEED diffraction patterns showed characteristic spot-splitting that corresponded to the appropriate terrace and step height. The nonstepped and stepped NiO(100) surfaces were exposed to bromobenzene at 130 K first to produce a molecularly adsorbed monolayer species and then, with increased exposure, a multilayer adsorbate. An additional adsorbate species, observed only on the stepped surfaces, was found to desorb at 145 K by two competing pathways. One pathway, which saturates at low coverages, leaves bromine behind on the substrate and results in dehalogenation. The other pathway yields molecular desorption at 145 K, but is only observed in detectable amounts after the dehalogenation pathway is saturated. On both stepped and nonstepped NiO(100) substrates, adsorbed bromine resulting from dehalogenation processes appears as nickel bromide, determined by the Br 3p XPS data.  相似文献   

12.
Steam-reforming reactions of methanol over NiO/Al2O3 and CuO/ZnO have been investigated. Over the nickel catalyst, the reaction rate is of zero kinetic order with respect to either methanol or steam, and the activation energy is 12.4 kJmol?1, whereas with copper catalyst, the rate is expressed according to the literature as kPa/(1 + KaPa + Kb+Pb) in which “a” and “b” are methanol and steam, respectively. The rate-controlling step of the reaction is assigned to the dissociation of O-H bond with dehydrogenation of C-H bond proceed rapidly to form carbon oxides. With copper catalyst the intrinsic participation of a water molecule during the dehydrogenation of C-H bond leads to the formation of carbon dioxide. With nickel catalyst, the dehydrogenation proceed more rapidly than the migration of a water molecule from an alumina site to a nickel site and causes almost exclusively the formation of carbon monoxide and hydrogen at a lower reaction temperature.  相似文献   

13.
We investigated the photodissociation mechanism of N,N-dimethylnitrosamine (CH(3))(2)NNO (DMN) by ab intio quantum chemical methods. Inspired by an earlier study we calculated two-dimensional potential energy surfaces of the S(1) state of DMN in its planar and pyramidal conformations. While the planar molecular geometry appears to possess no direct dissociation channel, the pyramidal configuration is dissociative yielding the products NO + (CH(3))(2)N. Using wave packet dynamics on the planar S(1) potential energy surface the experimental absorption spectrum was well reproduced which gives indirect but strong support for the nondissociative nature of this surface. The transition from the planar to the pyramidal conformation of DMN was then investigated by an ab initio molecular dynamics method which revealed the time evolution of the geometrical parameters of the molecule up to the dissociation of the N-N bond. This occurs about 90 fs after photon excitation. The calculated minimum energy path along the N-N coordinate and the structural changes of the molecule along this coordinate provided a detailed picture of this indirect dissociation or, more specific, predissociation process via conformational change.  相似文献   

14.
Formic acid photodegradation is one of the most important reactions in organic pollution control, and helps to improve the hydrogen generation efficiency in titanium dioxide catalyzed water photodecomposition. Based on density functional theory and Reax FF molecular dynamics, the adsorption, diffusion and activation of formic acid on the different anatase TiO_2(101),(001),(010) surfaces are investigated.The result shows that the adsorption of COOH on anatase TiO_2 surface shrinks the energy gap between the dehydrogenation intermediate COOH and HCOO. On the anatase TiO_2(101) surface, the formic acid breaks the O–H bond at the first step with activation energy 0.24 eV, and the consequent break of α-H become much easier with activation energy 0.77 eV. The dissociation of α-H is the determination step of the HCOOH decomposition.  相似文献   

15.
Water molecules desorbing from the bare Pt(553) surface desorb in a three peak structure, associated with, respectively, desorption from step and terrace sites and the water multilayer. Upon pre-covering the step sites with O(ad) we mainly observe OH formation on step sites. When terrace sites are also pre-covered with O(ad), OH(terrace) formation is favored over OH(step) formation, presumably because OH formed at terrace sites is more easily incorporated in a hydrogen bonded network of OH/H(2)O. This is a gradual process: with increasing θ(O) less OH(step) is formed. Thus, in spite of the fact that OH at step sites has a higher binding energy than OH at terrace sites, the possibility of the formation of OH at terrace sites actually inhibits the formation of OH at step sites, leaving O(step) as the most stable water dissociation product on the step.  相似文献   

16.
High-performance catalysts sufficient to significantly reduce the energy barrier of water activation are crucial in facilitating reactions that are restricted by water dissociation. Herein we present a Cu−Co double-atom catalyst (CuCo-DAC), which possesses a uniform and well-defined CuCoN6(OH) structure, and works together to promote water activation in silane oxidation. The catalyst achieves superior catalytic performance far exceeding that of single-atom catalysts (SACs). Various functional silanes are converted into silanols with up to 98 % yield and 99 % selectivity. Kinetic studies show that the activation energy of silane oxidation by CuCo-DAC is significantly lower than that of Cu single-atom catalyst (Cu-SAC) and Co single-atom catalyst (Co-SAC). Theoretical calculations demonstrate two different reaction pathways where water splitting is the rate-determining step and it is accelerated by CuCo-DAC, whereas H2 formation is key for its single-atom counterpart.  相似文献   

17.
The adsorption and dissociation of hydrogen on stepped surface (511) of nickel are studied with the embedded-atom model (EAM) method. The adsorption energy, the length of the adsorption bond and the adsorption height for a single hydrogen atom are calculated. Three kinds of stable sites are found for hydrogen adsorption. There are the double-fold bridge site B on the step edge, the three-fold hollow site H3′ on the step surface and the four-fold hollow sites H1 and H2 on the terrace surface. Compared with a hydrogen atom adsorbed on low-index (001) surface, there are two other adsorption sites near the step: the two-fold bridge site B on the step edge and the three-fold hollow site H3′ on the step surface. At the same time, the absorbability of the hydrogen atom at the site H1 is intensified. The results show that hydrogen adsorption on Ni (511) is affected by the existence of the step. The active barriers, adsorption energy and corresponding bond length for dissociation of a hydrogen molecule on the stepped surface are presented. The results show that the dissociation is easier at the bottom of the step. It is shown that the steps are the active sites for hydrogen adsorption and dissociation.  相似文献   

18.
19.
采用密度泛函理论计算研究了水在Cu-ZnO催化剂表面上不同位点的解离过程. 结果发现, 水在纯Cu密堆积面和台阶面解离能垒都较高; 而在负载的ZnO薄膜上, 由于水解离过程能垒较低并且反应约为热中性, 水将会在表面上部分解离并达到动力学平衡. Cu-ZnO界面被确定为水解离的活性中心. 水解离后产生的H原子和羟基均可以较大吸附能吸附在界面处, 并且界面处的类似台阶结构大大降低了解离能垒, 从而使得水的解离可自发进行. 另外, H原子和羟基在ZnO薄膜表面可以较低的能垒扩散, 因此水解离活性位点可以持续催化后续解离过程. 该结果深化了对水在Cu-ZnO催化剂表面活化过程的认识.  相似文献   

20.
Size and structure effects on the homolytic water dissociation reaction mediated by Pt nanoparticles have been investigated through density functional theory calculations carried out on a series of cubooctahedral Pt(n) nanoparticles of increasing sizes (n = 13, 19, 38, 55, 79, and 140). Water adsorption energy is not significantly influenced by the nanoparticle size. However, activation energy barrier strongly depends on the particle size. In general, the activation energy barrier increases with nanoparticles size, varying from 0.30 eV for Pt(19) to 0.70 eV for Pt(140). For the largest particle the calculated barrier is very close to that predicted for water dissociation on Pt(111) (0.78 eV) even though the reaction mediated by the Pt nanoparticles involves adsorption sites not present on the extended surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号