首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
 用尿素均匀沉淀法制备了不同含量锆促进的纳米氧化镍催化剂,并考察了其对乙烷氧化脱氢制乙烯的催化性能. 结果表明,纯纳米氧化镍在优化条件下的最高乙烯收率为21.7%; 而锆促进的纳米氧化镍催化剂对乙烯选择性和高温抗乙烷裂解性能都有明显改善. 15%ZrO2-NiO表现出最佳的催化性能,在410 ℃下,乙烷转化率为61.5%,乙烯选择性为68.6%,乙烯收率为42.2%; 该催化剂在420 ℃经36 h反应,乙烯收率仅下降约4%,粒子没有发生明显的团聚,表现出较好的稳定性. XRD结果表明,锆促进的纳米氧化镍粒子较纯纳米氧化镍粒子小,平均粒径为5~7 nm; 助剂锆以无定形的ZrO2形式存在. O2-TPD-MS结果表明,锆的加入提高了催化剂中较高温度下脱附的氧物种量,降低了较低温度下脱附的氧物种量. H2-TPR结果显示,锆促进的纳米氧化镍催化剂较纯纳米氧化镍难以完全还原.  相似文献   

2.
郁风驰  吴雪娇  张庆红  王野 《催化学报》2014,35(8):1260-1266
报道了一种HCl存在时温和条件下的乙烷氧化脱氢制乙烯催化转化新途径. 研究发现,在多种金属氧化物催化剂中,CeO2呈现最佳乙烯生成的催化性能. 与纳米粒子相比,具有棒状和立方体状形貌的CeO2纳米晶具有较高的乙烷转化率和乙烯选择性. 以MnOx修饰CeO2可进一步提高催化性能. 在8 wt% MnOx-CeO2催化剂上,723K反应2 h时乙烷转化率和乙烯选择性分别为94%和69%. 该催化剂性能稳定,反应100 h乙烯收率可保持在65%-70%. HCl的存在对乙烯的选择性生成起着至关重要的作用,一部分乙烯来自于氯乙烷的脱HCl反应.  相似文献   

3.
 用溶胶-凝胶法制备了纳米氧化镍。TEM结果表明,在380℃下焙烧的氧化镍粒子大小在10 nm以下。与大尺寸氧化镍相比,纳米氧化镍对乙烷氧化脱氢反应的催化性能有较大的改善,在获得相当收率时反应温度大约下降125℃。关于热点问题,可以通过催化剂与石英沙混合得到解决。  相似文献   

4.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

5.
采用水热法添加模板剂十六烷基三甲基溴化铵(CTAB)和配合剂柠檬酸(CA)制备了Mo VTe Nb O系列催化剂,并将其应用于丙烯一步氧化制备丙烯酸的反应.结果表明,CA的添加量对催化剂的形貌、孔结构、比表面积及催化性能具有明显的影响.当n(CA)/n(Mo)=0.36时,Mo VTe Nb O催化剂为介孔纳米催化剂,其平均孔径为4.9 nm,具有较高的比表面积(37.8 m2/g)和较小的催化剂晶粒(粒径范围为10~16 nm),与常规水热法制备的催化剂相比,Mo VTe Nb O介孔纳米催化剂的晶粒变小、催化性能得到了显著提高,丙烯一步氧化制丙烯酸的转化率可由53.9%提高至71.2%,丙烯酸收率可提高到45.8%.  相似文献   

6.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m~2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPaH_2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO_2,Pt/TiO_2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO_2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO_2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

7.
纳米Cr2O3系列催化剂上CO2氧化乙烷脱氢制乙烯反应   总被引:8,自引:0,他引:8  
邓双  李会泉  张懿 《催化学报》2003,24(10):744-750
 采用溶胶-凝胶法和共沸蒸馏法耦合技术制备了纳米Cr2O3催化剂,并采用共沉淀法和共沸蒸馏法耦合技术制备了纳米Cr2O3/Al2O3,Cr2O3/ZrO2和Cr2O3/MgO复合催化剂.应用BET,XRD,XPS,TPR和TEM等物理化学方法对催化剂的结构和物化性质进行了表征,并考察了该系列催化剂上CO2氧化乙烷脱氢制乙烯的反应性能.结果表明,纳米Cr2O3催化剂上乙烷和CO2的转化率均明显高于常规Cr2O3催化剂,但乙烯的选择性低于常规Cr2O3催化剂;纳米复合催化剂中的复合成分显著影响催化剂的催化性能.其中,10%Cr2O3/MgO纳米复合催化剂在温度为973K时,乙烷转化率和乙烯选择性分别可达到61.54%和94.79%.纳米催化剂表面Cr的还原性以及Cr6+/Cr3+比值是影响乙烷转化率和乙烯选择性的重要因素.  相似文献   

8.
乙烯是最为重要的化工原料之一,目前其工业来源主要来自于烃类的水蒸汽裂解过程.该过程本质上是一个高温均相裂解过程,温度(800℃)高,能耗大,碳排放严重.乙烷氧化脱氢制乙烯属于放热反应,反应温度低,速率快,无积碳等限制,是一条更富有竞争力的工艺路线.然而,常用的金属或金属氧化物催化剂容易导致乙烯深度氧化,从而降低了乙烯选择性.纳米碳材料在烃类氧化脱氢反应中展现出一定的催化活性,但容易被氧化,难以用于反应温度高的乙烷氧化脱氢反应.本文报道了羟基化的氮化硼(BNOH)可高效催化乙烷氧化脱氢制乙烯.氮化硼边沿羟基官能团脱氢生成了动态活性位,从而引发了乙烷的脱氢反应.BNOH对乙烷氧化脱氢制乙烯显示出高选择性.当乙烷转化率在11%,乙烯选择性可高达95%;当乙烷转化率增加到40%,乙烯选择性保持在90%.重要的是,当乙烷转化率超过60%时,BNOH仍然可保持80%的乙烯选择性以及50%的乙烯收率.这些性能指标与现有工业乙烷水蒸气裂解过程运行性能相当.进一步优化反应条件,BNOH催化剂能够实现高达9.1g_(C2H4)g_(cat)~(-1)h~(-1)的时空收率.经过200 h的氧化脱氢反应测试,BNOH催化剂活性和选择性基本恒定,表明其具有非常好的稳定性.X射线粉末衍射结果显示,反应前后BNOH催化剂的物相没有发生变化.透射电子显微镜测试证实,反应后BNOH催化剂的形貌和微观结构也没有明显改变.X射线光电子能谱结果显示,反应200 h后BNOH催化剂表面的氧含量仅从反应前的6.9 atom%微增到8.3 atom%.~1H固体核磁共振谱测试显示,反应200 h后,BNOH催化剂上羟基含量无明显改变.结合原位透射红外光谱和同位素示踪实验,初步确定了BNOH催化剂上引发乙烷氧化脱氢反应的活性中心.氮化硼边沿的氧官能团并不能引发乙烷的氧化脱氢反应,而羟基官能团才是氧化脱氢反应发生的活性位.在乙烷氧化脱氢条件下,分子氧脱除羟基官能团上的氢原子动态生成BNO~·和HO_2~·活性位.密度泛函理论计算表明,乙烷首先在BNO~·或HO_2~·位活化生成乙基自由基,这些中间物进一步与气相氧物种发生反应脱氢生成乙烯.动力学测试结果也验证了上述实验和理论结果.  相似文献   

9.
乙烯是最为重要的化工原料之一,目前其工业来源主要来自于烃类的水蒸汽裂解过程.该过程本质上是一个高温均相裂解过程,温度(>800?℃)高,能耗大,碳排放严重.乙烷氧化脱氢制乙烯属于放热反应,反应温度低,速率快,无积碳等限制,是一条更富有竞争力的工艺路线.然而,常用的金属或金属氧化物催化剂容易导致乙烯深度氧化,从而降低了乙烯选择性.纳米碳材料在烃类氧化脱氢反应中展现出一定的催化活性,但容易被氧化,难以用于反应温度高的乙烷氧化脱氢反应.本文报道了羟基化的氮化硼(BNOH)可高效催化乙烷氧化脱氢制乙烯.氮化硼边沿羟基官能团脱氢生成了动态活性位,从而引发了乙烷的脱氢反应.BNOH对乙烷氧化脱氢制乙烯显示出高选择性.当乙烷转化率在11%,乙烯选择性可高达95%;当乙烷转化率增加到40%,乙烯选择性保持在90%.重要的是,当乙烷转化率超过60%时,BNOH仍然可保持80%的乙烯选择性以及50%的乙烯收率.这些性能指标与现有工业乙烷水蒸气裂解过程运行性能相当.进一步优化反应条件,BNOH催化剂能够实现高达9.1 gC2H4 gcat-1 h-1的时空收率.经过200 h的氧化脱氢反应测试,BNOH催化剂活性和选择性基本恒定,表明其具有非常好的稳定性.X射线粉末衍射结果显示,反应前后BNOH催化剂的物相没有发生变化.透射电子显微镜测试证实,反应后BNOH催化剂的形貌和微观结构也没有明显改变.X射线光电子能谱结果显示,反应200 h后BNOH催化剂表面的氧含量仅从反应前的6.9 atom%微增到8.3 atom%.1H固体核磁共振谱测试显示,反应200 h后,BNOH催化剂上羟基含量无明显改变.结合原位透射红外光谱和同位素示踪实验,初步确定了BNOH催化剂上引发乙烷氧化脱氢反应的活性中心.氮化硼边沿的氧官能团并不能引发乙烷的氧化脱氢反应,而羟基官能团才是氧化脱氢反应发生的活性位.在乙烷氧化脱氢条件下,分子氧脱除羟基官能团上的氢原子动态生成BNO·?和HO2·?活性位.密度泛函理论计算表明,乙烷首先在BNO·?或HO2·?位活化生成乙基自由基,这些中间物进一步与气相氧物种发生反应脱氢生成乙烯.动力学测试结果也验证了上述实验和理论结果.  相似文献   

10.
采用直接水热合成法和浸渍法制备了相同Cr含量的Cr/Si-2催化剂,并在常压固定床微反应器上,考察了它们在CO2或者N2气氛下的乙烷脱氢制乙烯反应中的催化性能及稳定性.由于存在逆水煤气反应和Boudouard反应,CO2能显著促进乙烷的脱氢反应.不论是在CO2还是在N2气氛下,直接水热法制备的催化剂均比浸渍法制备的催化剂显示出更好的催化性能.高价态的Cr物种被认为是催化剂具有高活性的关键.在CO2气氛下的乙烷脱氢制乙烯反应中,浸渍法制备的催化剂比水热法制备的催化剂失活更快,催化剂失活速率的差异可能与它们的氧化还原性质有关.然而在N2气氛下的乙烷脱氢制乙烯反应中,这两种方法制备的催化剂失活速率差异不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号