首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper presents nonlinear dynamic modeling and control of flexible-link manipulators subjected to parametric excitation. The equations of motion are obtained using the Lagrangian-assumed modes method. Singular perturbation methodology is developed for the nonlinear time varying equations of motion to obtain a reduced-order set of equations. Control strategies, computed torque control and a composite control, based on the singular perturbation formulation developed, are utilized to reduce mechanical vibrations of the flexible-link and enable better tip positioning. Under the composite control technique, the effect of the value of perturbation parameter on the control signal is investigated. Numerical simulations supported by real-time experiments show that the singular-perturbation control methodology developed for the nonlinear time-varying system offers better system response over the computed torque control as the manipulator is commanded to follow a certain trajectory.  相似文献   

3.
The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.  相似文献   

4.
In this paper, a novel trajectory tracking controller is proposed for mobile robots with unknown orientation angle by employing the orientation-error observer (OEO). In order to overcome the local stability resulted from linearization design methods, an asymptotically stable controller is designed using Lyapunov’s direct method. This method breaks down nonlinear systems into low-dimensional systems and simplifies the controller design using virtual auxiliary error function and partial Lyapunov functions. A state-feedback controller for the nonlinear error dynamics of the mobile robot is combined with an observer that estimates the orientation-error based on available trajectory information and measurement of the position coordinates. The stability of the system is easily proved via the Lyapunov theory. Abundant simulation and experiment results validate the effectiveness and superiority of the proposed control method.  相似文献   

5.
6.
7.
Dynamic modeling of a cantilever beam under an axial movement of its basement is presented. The dynamic equation of motion for the cantilever beam is established by using Kane's equation first and then simplified through the Rayleigh-Ritz method. Compared with the older modeling method, which linearizes the generalized inertia forces and the generalized active forces, the present modeling takes the coupled cubic nonlinearities of geometrical and inertial types into consideration. The method of multiple scales is used to directly solve the nonlinear differential equations and to derive the nonlinear modulation equation for the principal parametric resonance. The results show that the nonlinear inertia terms produce a softening effect and play a significant role in the planar response of the second mode and the higher ones. On the other hand, the nonlinear geometric terms produce a hardening effect and dominate the planar response of the first mode. The validity of the present modeling is clarified through the comparisons of its coefficients with those experimentally verified in previous studies. Project supported by the Fundamental Fund of National Defense of China (No. 10172005).  相似文献   

8.
Manipulators with free links are called underactuated manipulators, and in these systems, the number of actuators is less than the degree of freedom of the manipulator. Motivations of the study on the underactuated manipulators are, for example, to construct back-up strategies in case of actuator failure in extreme missions such as space robots and to realize cost reduction by employing fewer actuators. In this paper, we investigate the reachable area of the tip of a two-link underactuated manipulator whose first link (active link) is equipped through an actuator to a base rotated with a constant angular velocity. We produce pitchfork bifurcations in the free link (second link) by motion with a high-frequency component of the active link and actuate perturbations of the pitchfork bifurcations by changing the configuration of the active link with respect to the direction of the centrifugal force. We investigate the reachable area of the tip of the manipulator under the control by analytical approach and experimentally discuss the validity of the theoretical prediction.  相似文献   

9.
Li  Yuanchun  Wei  Chongyang  An  Tianjiao  Ma  Bing  Dong  Bo 《Nonlinear dynamics》2022,109(4):2759-2779
Nonlinear Dynamics - In this paper, a cooperative game optimal tracking control method based on event-triggered mechanism for constrained input modular robot manipulators (MRMs) system is...  相似文献   

10.
A micromechanical model is proposed to describe both stable and unstable damage evolution in microcrack-weakened brittle rock material subjected to dynamic uniaxial tensile loads. The basic idea of the present model is to classify the constitution relationship of rock material subjected to dynamic uniaxial tensile loads into four stages including some of the stages of linear elasticity, pre-peak nonlinear hardening, rapid stress drop, and strain softening, and to investigate their corresponding micromechanical damage mechanisms individually. Special attention is paid to the transition from structure rearrangements on microscale to the macroscopic inelastic strain, to the transition from distribution damage to localization of damage and the transition from homogeneous deformation to localization of deformation. The influence of all microcracks with different sizes and orientations are introduced into the constitutive relation by using the statistical average method. Effects of microcrack interaction on the complete stress-strain relation as well as the localization of damage for microcrack-weakened brittle rock material are analyzed by using effective medium method. Each microcrack is assumed to be embedded in an approximate effective medium that is weakened by uniformly distributed microcracks of the statistically-averaged length depending on the actual damage state. The elastic moduli of the approximate effective medium can be determined by using the dilute distribution method. Micromechanical kinetic equations for stable and unstable growth characterizing the ‘process domains’ of active microcracks are taken into account. These ‘process domains’ together with ‘open microcrack domains’ completely determine the integration domains of ensemble averaged constitutive equations relating macro-strain and macro-stress. Theoretical predictions have shown to consistent with the experimental results.  相似文献   

11.
Shi  Danni  Zhang  Jinhui  Sun  Zhongqi  Xia  Yuanqing 《Nonlinear dynamics》2022,109(4):2693-2704
Nonlinear Dynamics - In this paper, the problem of the composite trajectory tracking control for robot manipulator with lumped uncertainties including unmodeled dynamics and external disturbances...  相似文献   

12.
Chen  Gang  Xu  Xinyao 《Nonlinear dynamics》2022,110(1):219-236
Nonlinear Dynamics - The clearance joint is very important to the nonlinear dynamic characteristics of mechanism. This paper presents a nonlinear dynamic characteristic modeling method of shift...  相似文献   

13.
In this paper, an optimal fuzzy sliding mode controller is used for tracking the position of robot manipulator, is presented. In the proposed control, initially by using inverse dynamic method, the known sections of a robot manipulator’s dynamic are eliminated. This elimination is done due to reduction over structured and unstructured uncertainties boundaries. In order to overcome against existing uncertainties for the tracking position of a robot manipulator, a classic sliding mode control is designed. The mathematical proof shows the closed-loop system in the presence of this controller has the global asymptotic stability. Then, by applying the rules that are obtained from the design of classic sliding mode control and TS fuzzy model, a fuzzy sliding mode control is designed that is free of undesirable phenomena of chattering. Eventually, by applying the PSO optimization algorithm, the existing membership functions are adjusted in the way that the error tracking robot manipulator position is converged toward zero. In order to illustrate the performance of the proposed controller, a two degree-of-freedom robot manipulator is used as the case study. The simulation results confirm desirable performance of optimal fuzzy sliding mode control.  相似文献   

14.
An adaptive control approach is proposed for trajectory tracking of wheeled mobile robot (WMR) with unknown longitudinal and lateral slipping. A kinematic model of tracked WMR is established in this paper, in which both longitudinal and lateral slipping are considered and processed as three time-varying parameters. Sliding mode observer is then introduced to real time estimate the slip parameters online. A stable tracking control law for this robot system is proposed by backstepping method, and the asymptotic stability is guaranteed by Lyapunov theory. Meanwhile, the controller gains are determined online by poles placement method. Simulation results show the effectiveness and robustness of the proposed method.  相似文献   

15.
Peng  Jianqing  Xu  Wenfu  Yang  Taiwei  Hu  Zhonghua  Liang  Bin 《Nonlinear dynamics》2020,101(1):233-253
Nonlinear Dynamics - The dynamics modeling and trajectory optimization of a segmented linkage cable-driven hyper-redundant robot (SL-CDHRR) become more challenging, since there are multiple...  相似文献   

16.
17.
Abstract

In this article, the nonlinear dynamic analysis of a flexible-link manipulator is presented. Especially, the possibility of chaos occurrence in the system dynamic model is investigated. Upon the occurrence of chaos, the system dynamical behavior becomes unpredictable which in turn brings about uncertainty and irregularity in the system motion. The importance of this investigation is pronounced in similar systems such as double pendulum and single-link flexible manipulator. What makes this study distinct from previous ones is the increase in the number of links as well as the changing the bifurcation parameters from system mechanical parameters to force and torque inputs. To this aim, the motion equations of the N-link robot, which are derived with the aid of the recursive Gibbs-Appell formulation and the assumed modes method, are used. In the end, the equations of motion are developed for a two-link flexible manipulator, and its nonlinear dynamical behavior is analyzed via numerical integration of discrete equations. The results are presented in the form of bifurcation diagrams (for variation of torque amplitude), time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms. The outcomes indicate that when there is no offset, the decrease in damping results in chaotic generalized modal coordinates. In addition, as the excitation frequency decreases from 2π to π, a limiting amplitude is created at 0.35 before which the behavior of generalized rigid and modal coordinates is different, while this behavior has more similarity after this point. An experimental setup is also used to check the torques as the system input.  相似文献   

18.
Calculation of design sensitivities often involves much computational effort, particularly in large structural systems with many design variables. Approximation concepts, which are often used to reduce the computational cost involved in repeated analysis, are usually not sufficiently accurate for sensitivity analysis. In this study, approximate reanalysis is used to improve the efficiency of dynamic sensitivity analysis. Using modal analysis, the response derivatives with respect to design variables are presented as a combination of sensitivities of the eigenvectors and the generalized displacements. A procedure intended to reduce the number of differential equations that must be solved during the solution process is proposed. Efficient evaluation of the derivatives, using finite difference and the recently developed combined approximations approach, is presented. Numerical examples show that high accuracy of design sensitivities can be achieved efficiently.  相似文献   

19.
Based on a distributed-parameter model, the forced vibration of a cantilever pair excited by a sinusoidal base movement is analyzed. Two cantilevers are coupled at their free ends by a linear spring. A nonlinear concentrated magnetic force acts on the tip of one cantilever, serving at the nonlinear boundary condition of the continuous model. The magnetic force is modeled as a fractional function, strongly dependent on the distance between two magnets. Via the method of multiple scales, the primary resonance is analyzed for all modes. A second-order approximate solution and its stability condition are analytically captured. It is revealed that the frequency–response curves are sensitive to the distance between the two magnets. The curve may exhibit the hardening-type, softening-type or linear behavior due to the existence of the quadratic nonlinearity. The outcomes are supported by the numerical simulations very well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号