首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computer simulations of water have been performed on the canonical ensemble at 15 different molecular number densities, ranging from 0.006 to 0.018 A-3, along the supercritical isotherm of 700 K, in order to characterize the percolation transition in the system. It is found that the percolation transition occurs at a somewhat higher density than what is corresponding to the supercritical extension of the boiling line. We have shown that the fractal dimension of the largest cluster and the probability of finding a spanning cluster are the most appropriate properties for the location of the true percolation threshold. Thus, percolation transition occurs when the fractal dimension of the largest cluster reaches 2.53, and the probability of finding a cluster that spans the system in at least one dimension and in all the three dimensions reaches 0.97 and 0.65, respectively. On the other hand, the percolation threshold cannot be accurately located through the cluster size distribution, as it is distorted by appearance of clusters crossing the finite simulated system even far below the percolation threshold. The structure of the largest water cluster is dominated by a linear, chainlike arrangement, which does not change noticeably until the largest cluster becomes infinite.  相似文献   

2.
Configurational-bias Monte Carlo simulations in the Gibbs and isobaric-isothermal ensembles using the transferable potentials for phase equilibria force field were carried out to investigate the thermophysical properties of mixtures containing supercritical carbon dioxide and methanol. The binary vapor-liquid coexistence curves were calculated at 333.15 and 353.15 K and are in excellent agreement with experimental measurements. The self-association of methanol in supercritical carbon dioxide was investigated over a range of temperatures and pressures near the mixture critical point. The temperature dependence of the equilibrium constants for the formation of hydrogen-bonded aggregates (from dimer to heptamer) allowed for the determination of the enthalpy of hydrogen bonding, DeltaHHB, in supercritical carbon dioxide with values for DeltaHHB of about 15 kJ mol(-1) falling within the range of previously proposed values. No strong pressure dependence was observed for the formation of aggregates. Apparently the decrease of the entropic penalty and of the enthalpic benefit upon increasing pressure or solvent density mostly cancel each other's effect on aggregate formation.  相似文献   

3.
The impact of particle geometry on the phase behavior of hard colloidal tetragonal parallelepipeds (TPs) was studied by using Monte Carlo simulations in continuum space. TPs or "cuboids" of aspect ratios varying from 0.25 to 8 were simulated by approximating their shapes with multisite objects, i.e., via rigid clusters of hard spheres. Using equation of state curves, order parameters, radial distribution functions, particle distribution functions along three directions, and visual analysis of configurations, an approximate phase diagram for the TPs was mapped out as a function of aspect ratio (r) and volume fraction. For r > 3 and intermediate concentrations, the behavior of the TPs was similar to that of spherocylinders, exhibiting similar liquid crystalline mesophases (e.g., nematic and smectic phases). For r = 1, a cubatic phase occurs with orientational order along the three axes but with little translational order. For 1 < r < 4, the TPs exhibit a cubatic-like mesophase with a high degree of order along three axes where the major axes of the particles are not all aligned in the same direction. For r < 1, the TPs exhibit a smectic-like phase where the particles have rotational freedom in each layer but form stacks with tetratic order. The equation of state for perfect hard cubes (r = 1) was also simulated and found to be consistent with that of the rounded-edge r = 1 TPs, except for its lack of discontinuity at the cubatic-solid transition.  相似文献   

4.
A key issue in nanoscale materials and chemical processing is the need for thermodynamic and kinetic models covering colloid-polymer systems over the mesoscopic length scale (approximately 1-100 nm). We have applied Monte Carlo simulations to attractive nanoscale colloid-polymer mixtures toward developing a molecular basis for models of these complex systems. The expanded ensemble Monte Carlo simulation method is applied to calculate colloid chemical potentials (micro(c)) and polymer adsorption (gamma) in the presence of freely adsorbing Lennard-Jones (LJ) homopolymers (surface modifiers). gamma and micro(c) are studied as a function of nanoparticle diameter (sigma(c)), modifier chain length (n) and concentration, and colloid-polymer attractive strength over 0.3 < Rg/sigma(c) < 6 (Rg is the polymer radius of gyration). In the attractive regime, nanocolloid chemical potential decreases and adsorbed amount increases as sigma(c), or n is increased. The scaling of gamma with n from the simulations agrees with the theory of Aubouy and Raphael (Macromolecules 1998, 31, 4357) in the extreme limits of Rg/sigma(c). When Rg/sigma(c) is large, the "colloid" approaches a molecular size and interacts only locally with a few polymer segments and gamma approximately n. When Rg/sigma(c) is small, the system approaches the conventional colloid-polymer size regime where multiple chains interact with a single particle, and gamma approximately sigma(c)2, independent of n. In contrast, adsorption in the mesoscopic range of Rg/sigma(c) investigated here is represented well by a power law gamma approximately n(p), with 0 < p < 1 depending on concentration and LJ attractive strength. Likewise, the chemical potential from our results is fitted well with micro(c) approximately n(q)sigma(c)3, where the cubic term results from the sigma(c) dependence of particle surface area (approximately sigma(c)2) and LJ attractive magnitude (approximately sigma(c)). The q-exponent for micro(c) (micro(c) approximately n(q)) varies with composition and LJ attractive strength but is always very close to the power exponent for gamma (gamma approximately n(p)). This result leads to the conclusion that in attractive systems, polymer adsorption (and thus polymer-colloid attraction) dominates the micro(c) dependence on n, providing a molecular interpretation of the effect of adsorbed organic layers on nanoparticle stability and self-assembly.  相似文献   

5.
Monte Carlo simulations were used to investigate the solvation of naphthalene in supercritical carbon dioxide at a temperature of 308.38 K just above the solvent's critical temperature and at pressures of 74.6, 79.7, 87.8, and 310.2 bar covering a range from just below to far above the solvent's critical pressure and at a slightly elevated temperature of 318.15 K and a pressure of 93.0 bar. The Monte Carlo simulations were carried out in the isobaric-isothermal ensemble and employed the transferable potentials for phase equilibria (TraPPE) force field. Systems containing 2000 carbon dioxide molecules and from 0 to 4 solute molecules were used for all five state points, and additional simulations with 16 000 solvent molecules were carried out at the lower temperature and p = 79.7 bar. In agreement with experiment, the simulations yield large, negative partial molar volumes of naphthalene near the critical pressure at 79.7 bar, with values of -4340 +/- 750 and -3400 +/- 620 cm(3) mol(-1) for the 2000 and 16 000 molecule systems, respectively. Structural analysis through radial distribution functions and the corresponding number integrals yields good agreement with neutron diffraction data and shows evidence for a long-range density enhancement around solutes but lacking any specific solute-solvent clustering. Solvatochromic shifts estimated from the local solvent structure correlate well with the experimental data over the entire pressure range.  相似文献   

6.
The nonequilibrium dynamics of condensation phenomena in nanopores is studied via Monte Carlo simulations of a lattice-gas model. Hysteretic behavior of the particle density as a function of the density of a reservoir is obtained for various pore geometries in two and three dimensions. The shape of the hysteresis loops depend on the characteristics of the pore geometry. The evaporation of particles from a pore can be fitted to a stretched exponential decay of the particle density. Phase-separation dynamics inside the pore is effectively described by a random walk of the non-wetting phases. Domain evolution is significantly slowed down in the presence of a random wall-particle potential and gives rise to a temperature-dependent growth exponent. A geometric roughness of the pore wall only delays the onset of a pure domain growth.  相似文献   

7.
The n-pi(*) electronic transition of acetone is a convenient and important probe to study supercritical water. The solvatochromic shift of this transition in supercritical water (adopting the experimental condition of P=340.2 atm and T=673 K) has been studied theoretically using Metropolis NPT Monte Carlo (MC) simulation and quantum mechanics (QM) calculations based on INDO/CIS and TDDFT-B3LYP6-31+G(d) methods. MC simulations are used to analyze hydration shells, solute-solvent interaction, and for generating statistically relevant configurations for subsequent QM calculations of the n-pi(*) transition of acetone. The results show that the average number of hydrogen bonds between acetone and water is essentially 13 of that in normal water condition of temperature and pressure. But these hydrogen bonds have an important contribution in the solute stabilization and in the solute-solvent interaction. In addition, they respond for nearly half of the solvatochromic shift. The INDO/CIS calculations explicitly considering all valence electrons of the water molecules, using different solvation shells, up to the third shell (170 water molecules), give a solvatochromic shift of 670+/-36 cm(-1) in very good agreement with the experimentally inferred result of 500-700 cm(-1). It is found that the solvatochromic effect on n-pi(*) transition of acetone in the supercritical condition is essentially given by the first solvation shell. The time-dependent density-functional theory (TDDFT) calculations are also performed including all solvent molecules up to the third shell, now represented by point charges. This TDDFT-B3LYP6-31+G(d) also gives a good but slightly overestimated result of 825+/-65 cm(-1). For comparison the same study is also made for acetone in water at normal condition. Finally, all average results reported here are statistically converged.  相似文献   

8.
The solution phase behavior of short, strictly alternating multiblock copolymers of type (A(n)B(n))(m) was studied using lattice Monte Carlo simulations. The polymer molecules were modeled as flexible chains in a monomeric solvent selective for block type A. The degree of block polymerization n and the number of diblock units per chain m were treated as variables. We show that within the regime of parameters accessible to our study, the thermodynamic phase transition type is dependent on the ratio of m / n. The simulations show microscopic phase separation into roughly spherical aggregates for m / n ratios less than a critical value and first-order macroscopic precipitation otherwise. In general, increasing m at fixed n, or n at fixed m, promotes the tendency toward macroscopic phase precipitation. The enthalpic driving force of phase change is found to universally scale with chain length for all multiblock systems considered and is independent of the existence of a true phase transition. For aggregate forming systems at low amphiphile concentrations, multiblock chains are shown to self-assemble into intramolecular, multichain clusters. Predictions for microstructural dimensions, including critical micelle concentration, equilibrium size, shape, aggregation parameters, and density distributions, are provided. At increasing amphiphile density, interaggregate bridging is shown to result in the formation of networked structures, leading to an eventual solution-gel transition. The gel is swollen and consists of highly interconnected aggregates of approximately spherical morphology. Qualitative agreement is found between experimentally observed physical property changes and phase transitions predicted by simulations. Thus, a potential application of the simulations is the design of multiblock copolymer systems which can be optimized with regard to solution phase behavior and ultimately physical and mechanical properties.  相似文献   

9.
Gibbs ensemble Monte Carlo methods based on a force field that combines the simple point charge [Berendsen et al., in Intermolecular Forces, edited by Pullman (Reidel, Dordrecht, 1981), p. 331] and transferable potentials for phase equilibria [Martin and Siepmann, J. Phys. Chem. B 102, 2659 (1998)] models were used to study the equilibrium properties of binary systems consisting of water and n-alkanes with chain lengths from hexane to hexadecane. In addition, systems where extended linear alkane chains (up to 300 carbon units long) were used to represent amorphous polyethylene were simulated in the presence of water using a connectivity altering osmotic Gibbs ensemble. In these simulations the equilibrium between a liquid water phase and a polymer phase into which water was inserted was studied. The predicted solubilities, which were determined between 350 and 550 K, are in good agreement with experiment, where experimental results are available, and the density of water molecules in the hydrocarbons is approximately 63% as high as in saturated water vapor under the same conditions. At the lower temperatures most of the water exists as monomers; increasing the temperature leads to an increase in the density of water in the alkane phase and hence in the fraction of molecules that participate in clusters. Dimers are the most prevalent clusters in all hydrocarbons and at all temperatures studied, and the fraction of clusters of given size decrease with increasing cluster size. A large fraction of trimers, tetramers, and pentamers, which are the cluster sizes for which topologies have been studied, are cyclic at low temperatures, but at higher temperatures linear structures predominate. The same properties are observed for pure water vapor clusters in equilibrium with the liquid phase, showing that the cluster topologies are not significantly affected by the surrounding hydrocarbon.  相似文献   

10.
Grand canonical Monte Carlo simulations are performed to evaluate the hydrogen-storage capacity of the recently discovered hydrogen hydrates of the sH type, at 274 K and up to 500 MPa. First, the pure H2 hydrate is investigated in order to determine the upper limit of H 2 content in sH hydrates. It is found that the storage capacity of the hypothetical pure H2 hydrate could reach 3.6 wt % at 500 MPa. Depending on pressure, the large cavity of this hydrate can accommodate up to eight H2 molecules, while the small and medium ones are singly occupied even at pressures as high as 500 MPa. Next, the binary H2-methylcyclohexane sH hydrate is examined. In this case, the small and medium cavities are again singly occupied, resulting in a maximum H2 uptake of 1.4 wt %. Finally, the results from simulations on pure H2 and binary hydrates are utilized to investigate the potential of H2 storage in sH hydrates where the promoter molecules occupy the medium instead of the large cavities.  相似文献   

11.
Isothermal-isobaric ensemble Monte Carlo simulation of adamantane has been carried out with a variable shape simulation cell. The low-temperature crystalline phase and the room-temperature plastic crystalline phases have been studied employing the modified Williams potential. We show that at room temperature, the plastic crystalline phase transforms to the crystalline phase on increase in pressure. Further, we show that this is the same phase as the low-temperature ordered tetragonal phase of adamantane. The high-pressure ordered phase appears to be characterized by a slightly larger shift of the first peak toward a lower value of r in C-C, C-H, and H-H radial distribution functions as compared to the low-temperature tetragonal phase. The coexistence curve between the crystalline and plastic crystalline phase has been obtained approximately up to a pressure of 4 GPa.  相似文献   

12.
We study the equilibrium properties of flexible polymer chains confined in a soft tube by means of extensive Monte Carlo simulations. The tube wall is that of a single sheet six-coordinated self-avoiding tethered membrane. Our study assumes that there is no adsorption of the chain on the wall. By varying the length N of the polymer and the tube diameter D we examine the variation of the polymer gyration radius Rg and diffusion coefficient Ddiff in soft and rigid tubes of identical diameter and compare them to scaling theory predictions. We find that the swollen region of the soft tube surrounding the chain exhibits a cigarlike cylindrical shape for sufficiently narrow tubes with D相似文献   

13.
To elucidate the physical origin of the preference of nucleic acid bases for stacking over hydrogen bonding in water, Monte Carlo simulations were performed starting from Watson?CCrick structures of the adenine?Cthymine, adenine?Curacil and guanine?Ccytosine base pairs, as well as from the Hoogsteen adenine?Cthymine base pair, in clusters comprising 400 and 800 water molecules. The simulations employed a newly implemented Metropolis Monte Carlo algorithm based on the extended cluster approach. All simulations reached stacked structures, confirming that such structures are preferred over the hydrogen-bonded Watson?CCrick and Hoogsteen base pairs. The Monte Carlo simulations show the complete transition from hydrogen-bonded base pairs to stacked structures in the Monte Carlo framework. Analysis of the average energies shows that the preference of stacked over hydrogen-bonded structures is due to the increased water?Cbase interaction in these structures. This is corroborated by the increased number of water?Cbase hydrogen bonds in the stacked structures.  相似文献   

14.
The Monte Carlo technique is used to study the vapor-liquid interface of cyclopentane, cyclohexane, and benzene. The OPLS and TraPPE potential fields are compared in the temperature range from 298.15 to 348.15 K (273.15-298.15 K for C5H10). A new method for the treatment of the long-range interactions in inhomogeneous simulations is used. When this new method is employed, the obtained values of saturated liquid density and of enthalpy of vaporization are equal to those obtained using the bulk isothermal-isobaric Monte Carlo technique. The values of surface tension become independent of the cutoff distance and they are significantly larger than those when only simple spherical truncation of intermolecular interactions is used.  相似文献   

15.
The structure and phase behavior of oppositely charged macroions in solution have been studied with Monte Carlo simulations using the primitive model where the macroions and small ions are described as charged hard spheres. Size and charge symmetric, size asymmetric, and charge asymmetric macroions at different electrostatic coupling strengths are considered, and the properties of the solutions have been examined using cluster size distribution functions, structure factors, and radial distribution functions. At increasing electrostatic coupling, the macroions form clusters and eventually the system displays a phase instability, in analogy to that of simple electrolyte solutions. The relation to the similar cluster formation and phase instability occurring in solutions containing oppositely charged polymers is also discussed.  相似文献   

16.
This paper systematically investigated the self-assembly of a cylinder-forming A13B3C2 triblock terpolymer confined in cylindrical nanopores using an annealing Monte Carlo simulation. When the pore wall is absolutely neutral, we observed the helix structures alternating with partial cylinder structures at the outside layer. When the pore wall attracts the shorter blocks, we observed various surface structures depending on the pore wall preference conditions; also, a general inner-layer structural transition sequence was confirmed. In addition, it was found that catenoid structures form in a broad pore diameter region when the pore wall attracts the longest block. This may be used to experimentally fabricate the long-range ordered nanostructure. The differences between this triblock terpolymer system and the cylinder-forming diblock copolymer system were compared, and it was found that the triblock system is more capable of retaining ordered structures under unfavorable confinement conditions.  相似文献   

17.
18.
We perform Gibbs ensemble Monte Carlo (GEMC) simulations of a one-component system of hard spheres with a repulsive shoulder and an attractive well. We show the existence of two distinct liquid-gas and liquid-liquid phase equilibria. The GEMC estimate of the critical parameters, as following from an interpolation of the binodal points, is only slightly influenced by finite size effects. The liquid-gas critical temperature and pressure are lower than those of the liquid-liquid phase separation. A discussion of our findings in comparison with those of previous numerical studies is also presented.  相似文献   

19.
A coarse-grained model of star-branched polymer chains confined in a slit was studied. The slit was formed by two parallel impenetrable surfaces, which were attractive for polymer beads. The polymer chains were flexible homopolymers built of identical united atoms whose positions in space were restricted to the vertices of a simple cubic lattice. The chains were regular star polymers consisted of f = 3 branches of equal length. The chains were modeled in good solvent conditions and, thus, there were no long-range specific interactions between the polymer beads-only the excluded volume was present. Monte Carlo simulations were carried out using the algorithm based on a chain's local changes of conformation. The influence of the chain length, the distances between the confining surfaces, and the strength of the adsorption on the properties of the star-branched polymers was studied. It was shown that the universal behavior found previously for the dimension of chains was not valid for some dynamic properties. The strongly adsorbed chains can change their position so that they swap between both surfaces with frequency depending on the size of the slit and on the temperature only.  相似文献   

20.
Thephasebehaviorinmultiplecomponentpolymersconstitutesalongstandingactiveacademicsubjectbothinpolymerscienceandcondensedstatephysics.Itisespeciallysignificantinguidingthefabricationofpolymeralloys[1].Duringthelastdecadesmuchattentionhasbeenpaidtothecom…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号