首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new tetranuclear manganese complex [Mn2IIMn2III(bhmcpH)2(hmp)4Cl2(MeOH)2] ( 1 ) [bhmcpH3 = 2, 6‐bis(hydroxymethyl)‐4‐chlorophenol, hmpH = 2‐(hydroxymethyl)pyridine] was synthesized and characterized. X‐ray diffraction analyses reveal that complex 1 crystallizes in the monoclinic space group P21/c. It has a mixed‐valence tetranuclear dicubane unit, which comprises two MnII and two MnIII ions. The temperature dependence of the magnetic susceptibilities of 1 indicates ferromagnetic interactions between the manganese ions.  相似文献   

2.
《Polyhedron》2003,22(14-17):1857-1863
The syntheses and magnetic properties are reported for three Mn4 single-molecule magnets (SMMs): [Mn4(hmp)6(NO3)2(MeCN)2](ClO4)2·2MeCN (3), [Mn4(hmp)6(NO3)4]·(MeCN) (4), and [Mn4(hmp)4(acac)2(MeO)2](ClO4)2·2MeOH (5). In each complex there is a planar diamond core of MnIII 2MnII 2 ions. An analysis of the variable-temperature and variable-field magnetization data indicate that all three molecules have intramolecular ferromagnetic coupling and a S=9 ground state. The presence of a frequency-dependent alternating current susceptibility signal indicates a significant energy barrier between the spin-up and spin-down states for each of these three MnIII 2MnII 2 complexes. The fact that these complexes are SMMs has been confirmed by the observation of hysteresis in the plot of magnetization versus magnetic field measured for single crystals of complexes 3 and 4. The hysteresis loops for both of these complexes exhibit steps characteristic of quantum tunneling of magnetization. Complex 4 shows its first step at zero field, whereas the first step for complex 3 is shifted to −0.10 T. This shift is attributable to weak intermolecular antiferromagnetic exchange interactions present for complex 3.  相似文献   

3.
《Polyhedron》2007,26(9-11):2065-2068
A giant spin Hamiltonian is often used to describe the low temperature magnetic behavior in single-molecule magnets (SMMs). By addressing only the ground state multiplet, the Hilbert space is reduced significantly allowing for numerical simulation of a wide body of experimental data. Analysis of the [Ni(hmp)(dmb)Cl]4 SMM using the giant spin model is compared to a four-ion model which addresses the local anisotropy associated with each of the magnetic Ni2+ ions, as well as the isotropic Heisenberg coupling between these ions. Higher-order giant spin Hamiltonian parameters that are absent in the individual ion parameterization appear when exchange coupling between the Ni2+ ions is introduced. Thus, a parameterization under the giant spin approximation is not purely a measure of anisotropic spin–orbit coupling, but instead a combination of interactions. Furthermore, the obtained parameters do not provide adequate insights into the physical processes within a SMM.  相似文献   

4.
Two nanosized Mn49 and Mn25Na4 clusters based on analogues of the high‐spin (S=22) [MnIII6MnII44‐O)4]18+ supertetrahedral core are reported. Mn49 and Mn25Na4 complexes consist of eight and four decametallic supertetrahedral subunits, respectively, display high virtual symmetry (Oh), and are unique examples of clusters based on a large number of tightly linked high nuclearity magnetic units. The complexes also have large spin ground‐state values (Mn49: S=61/2; Mn25Na4: S=51/2) with the Mn49 cluster displaying single‐molecule magnet (SMM) behavior and being the second largest reported homometallic SMM.  相似文献   

5.
The synthesis, gas sorption studies, magnetic properties, and theoretical studies of new molecular wheels of core type {MnIII8LnIII8} (Ln=Dy, Ho, Er, Y and Yb), using the ligand mdeaH2, in the presence of ortho‐toluic or benzoic acid are reported. From the seven wheels studied the {Mn8Dy8} and {Mn8Y8} analogues exhibit SMM behavior as determined from ac susceptibility experiments in a zero static magnetic field. From DFT calculations a S=16 ground state was determined for the {Mn8Y8} complex due to weak ferromagnetic MnIII–MnIII interactions. Ab initio CASSCF+RASSI‐SO calculations on the {Mn8Dy8} wheel estimated the MnIII–DyIII exchange interaction as ?0.1 cm?1. This weak exchange along with unfavorable single‐ion anisotropy of DyIII/MnIII ions, however, led to the observation of SMM behavior with fast magnetic relaxation. The orientation of the g‐anisotropy of the DyIII ions is found to be perpendicular to the plane of the wheel and this suggests the possibility of toroidal magnetic moments in the cluster. The {Mn8Ln8} clusters reported here are the largest heterometallic MnIIILnIII wheels and the largest {3d–4f} wheels to exhibit SMM behavior reported to date.  相似文献   

6.
Herein, the synthesis and study of bifunctional coordination polymers (CPs) with both magnetic and photoluminescence properties, derived from a heterometallic environment, are reported. As a starting point, three isostructural monometallic CPs with the formula [M(μ-2ani)2]n (MII=Mn ( 1Mn ), Co ( 3Co ) and Ni ( 4Ni ); 2ani=2-aminonicotinate), crystallise as chiral 2D-layered structures stacked by means of supramolecular interactions. These compounds show high thermal stability in the solid state (above 350 °C), despite which, in aqueous solution, compound 1Mn is shown to partially transform into a novel 1D chain CP with the formula [Mn(2ani)2(μ-H2O)2]n ( 2Mn ). A study of the direct current (dc) magnetic properties of 1Mn , 3Co and 4Ni reveals a spin-canted structure derived from antisymmetric antiferromagnetic weak exchanges along the chiral network (as confirmed by DFT calculations) and magnetic anisotropy of the ions, in such a way that long-range ordering is observed with variable magnitude for the spin carriers. Moreover, compounds 3Co and 4Ni show no frequency-dependent alternating current (ac) susceptibility curves under zero dc field; this is characteristic behaviour of a glassy state that may be partially supressed for 3Co by applying an external dc field. To overcome long-range magnetic ordering, CoII ions are diluted in a diamagnetic ZnII-based matrix, which enables single-molecule magnet behaviour. Interestingly, this strategy allows a bifunctional CoxZn1−x2ani material, which is imbued with a strong photoluminescent emitting capacity, as characterised by an intense blue light followed by a green afterglow, to be obtained.  相似文献   

7.
《Polyhedron》2007,26(9-11):2252-2258
A 2-D cyanide- and triamine-bridged MnIICrIII ferrimagnet, [Mn3(dien)2(H2O)2][Cr(CN)6]2 · 4H2O (1), has been prepared by the combination of Mn2+, diethylenetriamine (dien) co-ligand and [Cr(CN)6]3−. This compound forms a unique 2-D hollow sheet structure constructed by 1-D ribbon networks on the basis of triamine (dien)-bridged trinuclear MnII units. Compound 1 readily looses all lattice water molecules and irreversibly changes to a dehydrated form, [Mn3(dien)2(H2O)2][Cr(CN)6]2 (1a), in the air. Cryomagnetic studies of 1 and 1a reveal an antiferromagnetic interaction between CrIII and MnII ions, and an unusual long-range ferrimagnetic ordering below 30 K (1) and 40 K (1a) with multiple magnetic phase changes below TC. MCD spectra of 1a show a strong Faraday ellipticity associated with the LMCT band of the Cr–CN below 300 nm. Faraday ellipticity is remarkably enhanced below TC in line with the characteristics long-range ferrimagnetic ordering.  相似文献   

8.
Double‐layer structures consisting of alternating polar and non‐polar layers have been prepared using Mn2+ ions and o‐hydroxy­naphthoic acids. The polar layers contain the Mn2+ ions, carboxylate groups, hydr­oxy groups and water mol­ecules. The non‐polar layers are built up from the naphthalene moieties. In catena‐poly[[diaqua­manganese(II)]bis­(μ‐3‐hy­droxy‐2‐naphthoato‐κ2O:O′)] (also called manganese 3‐hy­droxy‐2‐naphthoate dihydrate), [Mn(C11H7O3)2(H2O)2]n, (I), the Mn2+ ions are connected by carboxylate groups to form two‐dimensional networks. This compound shows distinct antiferromagnetic inter­actions and long‐range ordering at low temperature. In contrast, tetra­aqua­bis(1‐hydr­oxy‐2‐naph­thoato‐κO)manganese(II), [Mn(C11H7O3)2(H2O)4], (II), which lacks a close linkage between the Mn2+ ions, reveals purely paramagnetic behaviour. In (II), the Mn2+ ion lies on an inversion centre.  相似文献   

9.
The tape‐like chain {[(tptz)MnII(H2O)MnIII(CN)6]2MnII(H2O)2}n?4n MeOH?2n H2O based on the anisotropic building block hexacyanomanganate(III) exhibits long‐range magnetic ordering below 5.1 K as well as single‐chain magnetic behavior at lower temperatures with an effective energy barrier of 40.5(7) K.  相似文献   

10.
The reaction of MnII(O2CMe)2 and NaCN or LiCN in water forms a light green insoluble material. Structural solution and Rietveld refinement of high-resolution synchrotron powder diffraction data for this unprecedented, complicated compound of previously unknown composition revealed a new alkali-free ordered structural motif with [MnII43-OH)4]4+ cubes and octahedral [MnII(CN)6]4− ions interconnected in 3D by MnII-N≡C-MnII linkages. The composition is {[MnII(OH2)3][MnII(OH2)]3}(μ3-OH)4][MnII(μ-CN)2(CN)4] ⋅ H2O=[MnII43-OH)4(OH2)6][MnII(μ-CN)2(CN)4] ⋅ H2O, which is further simplified to [Mn4(OH)4][Mn(CN)6](OH2)7 ( 1 ). 1 has four high-spin (S=5/2) MnII sites that are antiferromagnetically coupled within the cube and are antiferromagnetically coupled to six low-spin (S=1/2) octahedral [MnII(CN)6]4− ions. Above 40 K the magnetic susceptibility, χ(T), can be fitted to the Curie–Weiss expression, χ ∝(Tθ)−1, with θ=−13.4 K, indicative of significant antiferromagnetic coupling and 1 orders as an antiferromagnet at Tc=7.8 K.  相似文献   

11.
The nuclear magnetic relaxation was used to study the state of diheptyl dithiophosphoric acid (D7DTP, L7) anions in water and aqueous solutions of the nonionic surfactant, Ttiton X-100, at 298 K in the presence of paramagnetic probes, Mn2+ions. It was found that increase in the spin-lattice relaxation rate of water protons is caused by formation of simple and mixed (with surfactant) aggregates of D7DTP. Unlike the Mn2+–sodium dodecyl sulfate –Triton X-100 system, studied previously an influence of a probe concentration was found at surfactant concentration close to the CMC. It was suggested that two types of mixed species containing diheptyl dithiophosphate ions, Mn(II), and nonionic surfactant can be formed: micellar aggregates, {Mn(L7)2(TX)}, and polynuclear associates, [Mn x (L7) y (tx) z ]. The associates likely contain surfactant in the form of monomers (tx).  相似文献   

12.
A tetranuclear manganese complex [Mn4(HL)4(MeOH)4(SCN)2]·3MeOH (1) and a one-dimensional assembly of [Mn4] units, [Mn4(HL)4(MeOH)4(N(CN)2)2]·2.5MeOH (2) (H3L = 2,6-bis(hydroxymethyl)-4-methylphenol), have been synthesized and studied. Complexes 1 and 2 crystallize in the triclinic space group P $ \bar 1 $ \bar 1 and monoclinic space group P21/n, respectively. Complex 1 possesses a mixed-valence tetranuclear dicubane unit, which comprises two MnII and two MnIII ions. Complex 2 is built from the similar tetranuclear [Mn4] units connected through two N(CN)2 anions into a 1-D chain. The temperature dependence of the magnetic susceptibilities of 1 and 2 indicates ferromagnetic interactions between the manganese ions. Frequency-dependent out-of-phase signals of alternating current magnetic susceptibilities are observed in the low temperature range for both complexes, indicating a slow magnetic relaxation.  相似文献   

13.
单分子磁体   总被引:7,自引:0,他引:7  
单分子磁体是涉及合成化学、材料科学和凝聚态物理等边缘学科的一个新颖课题。本文对单分子磁体的主要性质、功能、研究方法和最新进展做了评述。重点介绍了含Mn和Fe这两类重要的单分子磁体。  相似文献   

14.
The insertion of the single‐molecule magnet (SMM) [MnIII(salen)(H2O)]22+ (salen2?=N,N′‐ethylenebis‐(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [MnIII(salen)(H2O)]2[MnIICrIII(ox)3]2 ? (CH3OH) ? (CH3CN)2 ( 1 ). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [MnIII(salen)(H2O)]2[ZnIICrIII(ox)3]2 ? (CH3OH) ? (CH3CN)2 ( 2 ) and [InIII(sal2‐trien)][MnIICrIII(ox)3] ? (H2O)0.25 ? (CH3OH)0.25 ? (CH3CN)0.25 ( 3 ), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of CrIII affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic MnIICrIII network is observed at Tc=5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3 . In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near‐reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions.  相似文献   

15.
Three high‐nuclearity mixed valence manganeseII/III coordination clusters, have been synthesised, that is, [Mn III 6Mn II 43‐O)4(HL1)63‐N3)33‐Br)(Br)](N3)0.7/(Br)0.3 ? 3 MeCN ? 2 MeOH ( 1 ) (H3L1=3‐methylpentan‐1,3,5‐triol), [MnIII11MnII64‐O)83‐Cl)4(μ,μ3‐O2CMe)2(μ,μ‐L2)10Cl2.34(O2CMe)0.66(py)3(MeCN)2] ? 7 MeCN ( 2 ) (H2L2=2,2‐dimethyl‐1,3‐propanediol and py is pyridine), and [MnIII12MnII74‐O)83‐η1N3)8(HL3)12(MeCN)6]Cl2 ? 10 MeOH ? MeCN ( 3 ) (H3L3=2,6‐bis(hydroxymethyl)‐4‐methylphenol) with high ground‐spin states, S=22, 28±1, and 83/2, respectively; their magnetothermal properties have been studied. The three compounds are based on a common supertetrahedral building block as seen in the Mn10 cluster. This fundamental magnetic unit is made up of a tetrahedron of MnII ions with six MnIII ions placed midway along each edge giving an inscribed octahedron. Thus, the fundamental building unit as represented by compound 1 can be described as a Mn10 supertetrahedron. Compounds 2 and 3 correspond to two such units joined by a common edge or vertex, respectively, resulting in Mn17 and Mn19 coordination clusters. Magnetothermal studies reveal that all three compounds show interesting long‐range magnetic ordering at low temperature, originating from negligible magnetic anisotropy of the compounds; compound 2 shows the largest magnetocaloric effect among the three compounds. This is as expected and can be attributed to the presence of a small magnetic anisotropy, and low‐lying excited states in compound 2 .  相似文献   

16.
Reactions of manganese benzoate dihydrate and lanthanide nitrate hexahydrate with 2‐(hydroxymethyl)pyridine (hmpH) as ligand in the mixture solutions of acetonitrile and ethanol according to different molar ratios of NEt3 generated two kinds of Mn‐Ln compounds [MnIII4LaIII2(O)2(hmp)7(PhCO2)2(NO3)5] ·5H2O ( 1 ) and [MnIII2GdIII2(hmp)6(PhCO2)4(NO3)2] ·3CH3CN·3C2H5OH·2H2O ( 2 ). By comparison of the two compounds, there exist considerable effects of reaction alkalinity on the structures and magnetic properties of products. Compound 1 possesses a core of [MnIII4LaIII2(μ 4‐O)(μ 3‐O)(μ 3‐OR)(μ 2‐O)7]2−, which comprises three face‐sharing defected cubane units. The core topology represents a new core type of Mn‐Ln clusters. Compound 2 has a planar‐butterfly structure. The solid‐state dc magnetic susceptibility analyses indicate the antiferromagnetic interactions within compound 1 and ferromagnetic interactions within compound 2 . Compound 1 has an S  = 0 ground state, while compound 2 possesses an S  = 11 ground state, fitting of the dc data for the tetranuclear Mn2Gd2 with the Magpack program gives parameters of J Mn‐Mn  = 3.11 cm−1, J Mn‐Gd  = 0.02 cm—1 and g  = 1.96.  相似文献   

17.
The title dinuclear di‐μ‐oxo‐bis­[(1,4,8,11‐tetra­aza­cyclo­tetra­decane‐κ4N)­manganese(III,IV)] diperchlorate nitrate complex, [Mn2O2(C10H24N4)2](ClO4)2(NO3) or [(cyclam)Mn­O]2(ClO4)2(NO3), was self‐assembled by the reaction of Mn2+ with 1,4,8,11‐tetra­aza­cyclo­tetra­decane in aqueous media. The structure of this compound consists of a centrosymmetric binuclear [(cyclam)MnO]3+ unit, two perchlorate anions and one nitrate anion. While the low‐temperature electron paramagnetic resonance spectra show a typical 16‐line signal for a di‐μ‐oxo MnIII/MnIV dimer, the magnetic susceptibility studies also confirm a characteristic antiferromagnetic coupling between the electronic spins of the MnIV and MnIII ions.  相似文献   

18.
The influence of magnetic interactions to the magnetization dynamics was well experimentally studied in a 3d‐4f single‐molecule magnet (SMM) [TbIII2FeIII3(μ5‐O)L2(NO3)4Cl] ( 1 , H4L = N,N,N’,N’‐tetrakis(2‐hydroxyethyl)ethylene diamine) and its diamagnetic‐ ion‐diluted samples. Significant ferromagnetic coupling between TbIII and FeIII ions and SMM behavior of 1 were observable, which proved clearly that the magnetic interaction between 3d‐4f spin carriers has also an excessive impact on fine‐tuning the magnetization dynamic behaviors of 3d‐4f complexes.  相似文献   

19.
A family of 3d–4f aggregates have been reported through guiding the dual coordination modes of ligand anion (HL?) and in situ generated ancillary bridge driven self‐assembly coordination responses toward two different types of metal ions. Reactions of lanthanide(III) nitrate (Ln=Gd, Tb, Dy, Ho and Yb), nickel(II) acetate and phenol‐based ditopic ligand anion of 2‐[{(2‐hydroxypropyl)imino}methyl]‐6‐methoxyphenol (H2L) in MeCN‐MeOH (3 : 1) mixture and LiOH provided five new octanuclear Ni‐4f coordination aggregates from two Ni2Ln2 cubanes. Single‐crystal X‐ray diffraction analysis reveals that all the members of the family are isostructural, with the central core formed from the coupling of two distorted [Ni2Ln2O4] heterometallic cubanes [Ni2Ln2(HL)2(μ3‐OH)2(OH)(OAc)4]+ (Ln=Gd ( 1 ), Tb ( 2 ), Dy ( 3 ), Ho ( 4 ) and Yb ( 5 )). Higher coordination demand of 4f ions induced the coupling of the two cubes by (OH)(OAc)2 bridges. Variable temperature magnetic study reveals weak coupling between the Ni2+ and Ln3+ ions. For the Tb ( 2 ) and Dy ( 3 ) analogs, the compounds are SMMs without an applied dc field, whereas the Gd ( 1 ) analogue is not an SMM. The observation revealed thus that the anisotropy of the Ln3+ ions is central to display the SMM behavior within this structurally intriguing family of compounds.  相似文献   

20.
Na2Mn2(1 − x)Cd2xFe(PO4)3 (0 ≤ x ≤ 1) phosphates were prepared by solid state reaction and characterized by powder X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy. The X-ray diffraction patterns indicated the formation of a continuous solid solution which crystallizes in the alluaudite structural type characterized by the general formula X(2)X(1)M(1)M(2)2(PO4)3. The cation distribution, deduced from a structure refinement of the x = 0, 0.5 and 1 compositions, is ordered in the X(2) sites and disordered in the remaining X(1), M(1) and M(2) sites. The magnetic susceptibility study revealed an antiferromagnetic behaviour of the studied compounds. The 57Fe Mössbauer spectroscopy confirmed the structural results and proved the exclusive presence of Fe3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号