首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermostimulated luminescence (TSL) glow curve characteristics of ten dolomitic crystals of Salem and Namakkal districts of Tamilnadu are analysed. The natural thermoluminescence (NTL) measurements were carried out for all the samples and show two peaks at 270 °C and 335 °C. The sample irradiated with a gamma dose of 200 Gy shows an additional peak at 180 °C, when recorded with linear heating rate of 10 °Cs−1. At the same time, the NTL peak at 270 °C is shifted to 260 °C while increasing in intensity and there is no change in the peak position of 335 °C. The annealed sample also shows the same trend. The sample was annealed in air at the temperatures ranging from 200 to 950 °C, at an interval of 50 °C, for 1 h duration. Annealing treatment above 250 °C increases the sensitivity of all three TSL peaks. On the other hand, annealing at 800 °C caused a collapse in the TSL sensitivity. The enhancement in TSL sensitivity was found to depend on the annealing temperature and time. Annealing treatment at 700 °C for 4 h followed by quenching in air is the optimum condition for TSL sensitization. The response to gamma irradiation is linear in the range from 0.5 to 104 Gy. The number of glow peaks was identified through partial heating method. Using peak shape and initial rise method the kinetic parameters (activation energy (E), frequency factor (S) and order of kinetics (b)) were evaluated. The investigations show that the trapping centers are not affected by the annealing procedure. The emission spectra of all the samples show an emission at around 608 nm but with different intensities for each sample. With reference to earlier work, it may be assumed that the recombination site always involves Mn2+ ions.  相似文献   

2.
The role of alkali ions in the creation of the thermally stimulated luminescence (TSL) peak at 190 K in quartz has been investigated by wavelength resolved TSL and thermally stimulated current (TSC) measurements performed on synthetic crystals, both as grown and hydrogen swept, characterised by alkali content of about 1–3 and 0.1 ppm respectively. The 190 K peak has been efficiently produced in as-grown crystals by a double irradiation procedure consisting of a first x-ray irradiation at 90 K followed by heating in the 170–300 K temperature range and a second irradiation at 90 K; this effect has not been observed in the hydrogen swept crystal. Moreover, the study of the spectral composition of the emitted light has shown the existence of two emission bands, one peaking at 450 nm (T<150 K) and the second one evidenced for T>150 K and peaking at around 380 nm.

In as grown samples, TSC peaks at 205, 260 and at around 350 K (composite structure) have been detected: their intensities are much stronger in the as grown crystal and with the electric field oriented along the z-axis indicating that they have an ionic character. By taking into account the mechanism of formation of the [SiO4/M+]0 (M+=Li+, Na+) traps (previously found to be responsible for the 190 K TSL peak), the 205 K TSC peak can be attributed to the radiation induced dissociation of alkalis from [AlO4/M+]0 defect centres and subsequent migration near to Si sites; on the other hand, the 260 K TSC peak can be related to the subsequent disintegration of [SiO4/M+]0 defects involving the migration of alkalis to different ionic traps.

PACS: 78.60.K–61.72.J–42.70.Ce  相似文献   


3.
The domain structure of prismatic 2.5%-silicon-iron single crystals with 110-axes is investigated using the magneto-optic Kerr effect. The effective field is systematically varied in the temperature range from 20°C to the Curie-temperature. The main domains, consisting of plates and wedges, are stable up to 745°C. In “idealized” samples, the mobility of the Bloch-walls and the width of the plates as a function of the effective field strongly depend on the preceding temperature and field treatments. This dependence vanishes only above 500°C. The measurements can be explained by a thermally activated interaction between Bloch-walls and atomic “complexes”.  相似文献   

4.
The lasing characteristics of mid-IR type-II “W” [InAs/GaInSb/InAs/AlAsSb] structures are found to correlate strongly with the growth conditions and low-temperature photoluminescence (PL) properties. The highest PL intensities and narrowest PL lines are obtained when the wafers are grown at ≈480–510°C with mixed interface bonds. A number of structures grown at a non-optimal lower temperature (≈425°C) nonetheless yielded lower lasing thresholds, lower internal losses, and longer Shockley-Read lifetimes than any grown previously on the present Riber 32P MBE system. All of the laser spectra display regularly-spaced multiple peaks that are consistent with periodic modulation of the cavity loss due to mode-leakage into the GaSb substrate.  相似文献   

5.
Thermally stimulated luminescence (TSL) of aluminoborosilicate glass doped with CdSe nanoparticles (28 and 47 Å) has been studied after exposure to ionizing radiation; the intense TSL peaks were observed at temperatures 150 and 85 °C, respectively. The optical absorption spectra, as well as TSL of the irradiated samples containing CuBr nanoparticles (44 Å) were also measured. In the case of CuBr, TSL was observed neither before nor after irradiation. The dependence of TSL intensity on irradiation time indicates that glass activated by CdSe nanoparticles shows promise as a dosimetric material.  相似文献   

6.
《Physics letters. [Part B]》2008,660(5):466-470
A partial-wave analysis of the reaction πpηηπp at 18 GeV/c has been performed on a data sample of approximately 4000 events obtained by Brookhaven experiment E852. The JPC=0−+π(1800) state is observed in the a0(980)η and f0(1500)π decay modes. It has a mass of 1876±18±16 MeV/c2 and a width of 221±26±38 MeV/c2. The JPC=2−+π2(1880) meson is observed decaying through a2(1320)η. It has a mass of 1929±24±18 MeV/c2 and a width of 323±87±43 MeV/c2. Both states are potential candidates for non-exotic hybrid mesons.  相似文献   

7.
The feasibility of imaging macrophages labeled with ultrasmall superparamagnetic iron-oxide nanoparticles (USPIO) with fast low-angle positive contrast steady-state free precession (FLAPS) was investigated through theory and in vitro experiment. Human macrophage cells were labeled with USPIO and imaged at 1.5 T. The metric “visibility,” which combines magnitude and spatial extent of positive contrast, was used to evaluate the images. Negative contrast steady-state free precession (SSFP) and gradient-echo (GRE) imaging were also evaluated. Positive contrast was observed for relatively high concentrations of labeled cells for flip angles less than α=25°. Theoretical and experimental results indicate that positive visibility (VISPOS) was maximized at α=10° and 15°. Low flip angle SSFP also provided negative contrast comparable to standard SSFP and GRE imaging. Results suggest that USPIO-labeled macrophages are capable of producing the conditions necessary for positive contrast with FLAPS at clinical field strength (1.5 T) and resolution (0.8×0.8×3 mm3).  相似文献   

8.
Ceramics with formula (1 − x)Pb(Zr0.52Ti0.48)O3x(Bi3.25La0.75)Ti3O12 (when x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were prepared by a solid-state mixed-oxide method and sintered at temperatures between 950 °C and 1250 °C. It was found that the optimum sintering temperature was 1150 °C at which all the samples had densities at least 95% of theoretical values. Phase analysis using X-ray diffraction indicated the existence of BLT- as well as PZT-based solid solutions with corresponding lattice distortion. Scanning electron micrographs of ceramic surfaces showed a plate-like structure in BLT-rich phase while the typical grain structure was observed for PZT-rich phase. The grain sizes of both pure BLT and PZT ceramics were found to decrease as the relative amount of the other phase increased. This study suggested that tailoring of properties of this PZT–BLT system was possible especially on the BLT-rich side due to its large solubility limit.  相似文献   

9.
We present a first set of improved selective pulses, obtained with a numerical technique similar to the one proposed by Geen and Freeman. The novelty is essentially a robust and efficient “evolution strategy” which consistently leads, in a matter of minutes, to “solutions” better than those published so far. The other two ingredients are a “cost function,” which includes contributions from peak and average radiofrequency power, and some understanding of the peculiar requirements of each type of pulse. For example, good solutions for self-refocusing pulses and “negative phase excitation pulses” (which yield a maximum signal well after the end of the pulse) are found, as may have been predicted, among amplitude modulated pulses with 270° tip angles. Emphasis is given to the search for solutions with low RF power for selective excitation, saturation, and inversion pulses. Experimental verification of accuracy and power requirements of the pulses has been performed with a 4.7 T Sisco imager.  相似文献   

10.
Anisotropic superconducting materials often show an enhanced pinning along their crystallographic ab-planes. To obtain information about such a behavior of the high-Tc system Hg-1201 (HgBa2CuO4) magnetic investigations on a single crystal are performed for the two field orientations, parallel to the c-axis and parallel to the ab-planes. The dependence of the ac magnetization on temperature, magnetic field and frequency is determined. Compared to former results on powder samples of this system no indication of a second peak in the imaginary part of the susceptibility χ′′ is found. It seems to be shifted to higher temperatures overlapping now with the first peak. The corresponding irreversibility lines for both orientations, parallel to c and parallel to ab, are determined and discussed within the framework of a “diffusion” model.  相似文献   

11.
A crystalline quartz plate of thickness 1.070 mm is calibrated between 370 and 794 nm. Throughout this spectral interval, the retardance varied by 32π and the plate introduced quarterwave retardance 16 times at different wavelengths. The birefringence (neno) of crystalline quartz was calculated as a single quantity and varied from 0.00971 at 370 nm to 0.00891 at 794 nm. All measurements were carried out at 23°C.  相似文献   

12.
An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional “chemical shift grid.” All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This “symmetry filter” employs a “lowest value algorithm” to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of “confidence criteria” expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap.  相似文献   

13.
The photoluminescence spectra of GeSi/Si (0 0 1) self-assembled islands produced by solid source molecular beam epitaxy in a wide range (460–700°C) of growth temperatures were investigated. The results showed a blue shift of the island-related photoluminescence peak with a growth temperature lowering from 600°C to 550°C. The observed blue shift of the island photoluminescence peak is associated with a sharp decrease in the average height of the island, which occurs through a change of its shape from dome to hut as the growth temperature lowers from 600°C to 550°C.  相似文献   

14.
We reported on the recombination processes determined by the release of electrons from defects connected with the dosimetric 430 K thermostimulated luminescence (TSL) peak as well as with the 260 K TSL peak. These TSL peaks appear in thermochemically reduced α-Al2O3 crystals containing hydrogen and emission of these TSL peaks corresponds to luminescence of the F-center. The X-ray exposure or UV excitation in the absorption band of F-centers at 6.0 eV of reduced α-Al2O3 crystals doped with acceptor impurities results in the appearance of a broad anisotropic complex absorption band in the spectral region 2.5–3.5 eV and in the appearance of a predominant TSL peak at 430 K. Above 430 K the above-mentioned broad absorption band disappears. Optical bleaching of the 2.5–3.5 eV band is accompanied by the disappearance of the 430 K TSL peak and results in F-center emission. The X-ray or UV excitation of reduced α-Al2O3 crystals with donor-type impurities results in the appearance of an anisotropic absorption band at 4.2 eV and the appearance of a dominant TSL peak at 260 K. Above 260 K the 4.2 eV absorption disappears and photostimulated luminescence (PSL) of the F-center recombination luminescence in the 4.2 eV region is no longer observed. Optical bleaching of the 4.2 eV absorption band is accompanied by the disappearance of the 260 K TSL peak. The successful use of reduced α-Al2O3 in dosimetry needs the optimization of the concentration of all components (acceptors, hydrogen, intrinsic defects) involved in the thermo- and photostimulated processes.  相似文献   

15.
The bulk dense Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1−x)0.92O3 pyroelectric ceramics have been successfully prepared by the conventional solid method. The effect of three phases coexistence in the ceramics is studied. When x = 0.95 and 0.85 in the ceramics, the maximum pyroelectric coefficient peaks appear at 23 °C and 45 °C, and the maximum values are 26.5 × 10−4 C/m2 °C and 25.5 × 10−4 C/m2 °C, respectively. The maximum pyroelectric coefficient appears large while the peaks widths are small. When the two kinds of ceramic powders mixed with the mol ratio of 2:1, the pyroelectric coefficient of the ceramics is above 10.0 × 10−4 C/m2 °C in a broad temperature range from 20 °C to 55 °C. The possible physical mechanism of the temperature broadened phenomenon is briefly discussed.  相似文献   

16.
Effectively atomically flat GaAs/AlAs interfaces over a macroscopic area (“super-flat interfaces”) have been realized in GaAs/AlAs and GaAs/(GaAs) (AlAs) quantum wells (QWs) grown on (4 1 1)A GaAs substrates by molecular beam epitaxy (MBE). A single and very sharp photoluminescence (PL) peak was observed at 4.2 K from each GaAs/AlAs or GaAs/(GaAs) (AlAs) QW grown on (4 1 1)A GaAs substrate. The full-width at half-maximum (FWHM) of a PL peak for GaAs/AlAs QW with a well width ( ) of 4.2 nm was 4.7 meV and that for GaAs/(GaAs) (AlAs) QW with a smaller well width of 2.8 nm (3.9 nm) was 7.6 meV (4.6 meV), which are as narrow as that for an individual splitted peak for conventional GaAs/AlAs QWs grown on (1 0 0) GaAs substrates with growth interruption. Furthermore, only one sharp peak was observed for each GaAs/(GaAs) (AlAs) QW on the (4 1 1)A GaAs substrate over the whole area of the wafer (7 7 mm ), in contrast with two- or three-splitted peaks reported for each GaAs/AlAs QW grown on the (1 0 0) GaAs substrate with growth interruption. These results indicate that GaAs/AlAs super-flat interfaces have been realized in GaAs/AlAs and GaAs/(GaAs) (AlAs) QWs grown on the (4 1 1)A GaAs substrates.  相似文献   

17.
We have studied the silicon (Si) band-structure, electron–electron and electron-ionized donor interaction effects on our accurate and approximate results (AcR and ApR) for renormalized effective spin susceptibitity (RESS), electron mass (EEM), Landé factor and spin polarization in the impure 2D Si (electron system), showing that:(i) our ApR, being strongly deviated from our AcR, reproduces approximately all the data obtained recently by Pudalov et al. (Phys. Rev. Lett. 88 (2002) 196404) [in particular, RESS =4.7 at the critical value of Wigner–Seitz radius rs: rs=rc≈8.5 at which occur the “apparent” metal–insulator transition (MIT)] and can also be compared with other ApRs found in the recent literature,(ii) both the RESS and EEM produce physical singularities at the same critical value: rs=rc11.05661 (weakly disordered samples) at which occurs the “true” MIT; the existence of such two “apparent and true” critical values in this impure system agrees with a recent discussion by Abrahams et al. (Rev. Mod. Phys. 73 (2001) 251), and(iii) at rs=rc=8.5, at which occurs the “apparent” MIT, our AcR for effective spin polarization and the corresponding result, obtained using a disordered Hubbard model and a determinant quantum Monte Carlo method by Denteneer and Scalettar (Phys. Rev. Lett. 90 (2003) 246401), both give the same result: ξeff.c0.31 at B0.4 T, which is found to be lower than the critical parallel magnetic field for full spin polarization, Bc=1.29 T, supporting thus the existence of such an “apparent” MIT.  相似文献   

18.
Highly transparent and conductive scandium doped zinc oxide (ZnO:Sc) films were deposited on c-plane sapphire substrates by sol–gel technique using zinc acetate dihydrate [Zn(CH3COO)2·2H2O] as precursor, 2-methoxyethanol as solvent and monoethanolamine as a stabilizer. The doping with scandium is achieved by adding 0.5 wt% of scandium nitrate hexahydrate [(ScNO3·6H2O)] in the solution. The influence of annealing temperature (300–550 °C) on the structural, optical and electrical properties was investigated. X-ray Diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.16° are obtained at an annealing temperature of 400 °C. The surface morphology of the films was judged by SEM and AFM images which indicated formation of grains. The average transmittance was found to be above 92% in the visible region. ZnO:Sc film, annealed at 400 °C exhibited minimum resistivity of 1.91 × 10−4 Ω cm. Room-temperature photoluminescence measurements of the ZnO:Sc films annealed at 400 °C showed ultraviolet peak at 3.31eV with a FWHM of 11.2 meV, which are comparable to those found in high-quality ZnO films. Reflection high-energy electron diffraction pattern confirmed the epitaxial nature of the films even without introducing any buffer layer.  相似文献   

19.
Single-wall, double walled or few walled nanotubes (FWNT) are grown by electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) at temperature as low as 600 °C. Most of these structures are isolated and self-oriented perpendicular to the substrate. The growth mechanism observed for single-wall and few walled (less than seven walls) nanotubes is the “base-growth” mode. Their grow kinetics is investigated regarding two parameters namely the growth time and the synthesis temperature. It is shown that nucleation and growth rate is correlated with the number of walls into FWNT. It also provides an evidence of a critical temperature for FWNT synthesis.  相似文献   

20.
Erbium (Er)- and oxygen (O)-doped Cz–Si was additionally doped with hydrogen, using plasma enhanced chemical vapour deposition. Photoluminescence (PL) spectra show a large enhancement especially for samples treated with solid phase epitaxy before hydrogenation and annealing at 900°C later. Secondary ion mass spectroscopy measurements give evidence for an enhanced diffusion of O and Er at this temperature towards the surface. Etching shows that the PL does not stem from the heavily doped surface layer but from a deeper region with lower Er concentration. This conclusion is supported by the appearance of the so-called “cubic” centre with low solubility. Comparing the PL yield of the hydrogenated samples to that of samples with similar Er volume concentration but without hydrogenation still gives a large enhancement. We thus conclude that hydrogen can enhance the solubility of the cubic centre in Si:Er,O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号