首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
通过限制球形卷积(constrained spherical deconvolution,CSD)和神经纤维追踪技术(tractography),以了解大脑左右半球的弓状束(arcuate fasciculus,AF)神经结构完整性与语言理解能力的相关性.该文使用磁共振成像(MRI)仪对14例大脑左半球罹患肿瘤的右利手患者进行了术前术后扫描(每次扫描均伴随一次波士顿失语症测试),并用分析软件DSI Studio计算术前术后左右半球弓状束的四项扩散指标,并进行了比较.结果发现左脑弓状束有两项指标在术前术后有非常显著的差异(p0.01),而右脑四项指标均无显著改变(p0.05).另外,该文还将扩散指标与患者相对应的语言测试所反映的语言理解能力进行了相关性分析,发现无论术前术后,左半球弓状束与语言理解能力相关系数r介于0.6~0.8之间,而右半球则仅介于0.3~0.4之间.上述结果表明,语言理解能力与左侧弓状束密切相关(p0.01),而与右侧弓状束相关性不大,此结果与以往研究者对大脑侧化的认知相符.  相似文献   

2.
蒋帆  王远军 《波谱学杂志》2018,35(4):520-530
扩散张量脑模板包含丰富的大脑白质组织信息,在空间标准化或者脑图谱创建中具有重要价值,然而基于扩散张量模型构建的脑模板精度不高,特别是在脑部复杂的神经元微观结构区域中应用受到限制.针对这一问题,研究者们提出了基于高分辨率扩散成像构建大脑模板的方法.本文对使用扩散张量成像方法进行脑模板构建的研究进展进行了综述,首先介绍了扩散张量脑模板构建的发展进程,阐述了脑模板构建中解决的技术问题及同时存在的局限性;接着详细论述了基于扩散频谱成像及高角度分辨率扩散成像构建脑模板的不同方法间的差异,并总结了这些研究方法取得的重要进展;最后通过分析目前研究进展提出该研究问题中存在的不足以及未来的发展趋势.  相似文献   

3.
Several methods have been proposed for motion correction of high angular resolution diffusion imaging (HARDI) data. There have been few comparisons of these methods, partly due to a lack of quantitative metrics of performance. We compare two motion correction strategies using two figures of merit: displacement introduced by the motion correction and the 95% confidence interval of the cone of uncertainty of voxels with prolate tensors. What follows is a general approach for assessing motion correction of HARDI data that may have broad application for quality assurance and optimization of postprocessing protocols. Our analysis demonstrates two important issues related to motion correction of HARDI data: (1) although neither method we tested was dramatically superior in performance, both were dramatically better than performing no motion correction, and (2) iteration of motion correction can improve the final results. Based on the results demonstrated here, iterative motion correction is strongly recommended for HARDI acquisitions.  相似文献   

4.
The q-space imaging techniques and high angular resolution diffusion (HARD) imaging have shown promise to identify intravoxel multiple fibers. The measured orientation distribution function (ODF) and apparent diffusion coefficient (ADC) profiles can be used to identify the orientations of the actual intravoxel fibers. The present study aims to examine the accuracy of these profile-based orientation methods by comparing the angular deviations between the estimated local maxima of the profiles and the real fiber orientation for a fiber crossing simulated with various intersection angles under different b values in diffusion-weighted MRI experiments. Both noisy and noise-free environments were investigated. The diffusion spectrum imaging (DSI), q-ball imaging (QBI), and HARD techniques were used to generate ODF and ADC profiles. To provide a better comparison between ODF and ADC techniques, the phase-corrected angular deviations were also presented for the ADC method based on a circular spectrum mapping method. The results indicate that systematic angular deviations exist between the actual fiber orientations and the corresponding local maxima of either the ADC or ODF profiles. All methods are apt to underestimation of acute intersection and overestimation of obtuse intersection angle. For a typical slow-exchange fiber crossing, the ODF methods have a non-deviation zone around the 90 degrees intersection. Before the phase-correction, the deviation of ADC profiles approaches a peak at the 90 degrees intersection, while after the correction the ADC deviations are significantly reduced. When the b factor is larger than 1000 s/mm2, the ODF methods have smaller angular deviations than the ADC methods for the intersections close to 90 degrees . QBI method demonstrates a slight yet consistent advantage over the DSI method under the same conditions. In the noisy environment, the mean value of the deviation angles shows a high consistency with the corresponding deviation in the nose-free condition.  相似文献   

5.
Development and initial evaluation of 7-T q-ball imaging of the human brain   总被引:1,自引:0,他引:1  
Diffusion tensor imaging (DTI) noninvasively depicts white matter connectivity in regions where the Gaussian model of diffusion is valid but yields inaccurate results in those where diffusion has a more complex distribution, such as fiber crossings. q-ball imaging (QBI) overcomes this limitation of DTI by more fully characterizing the angular dependence of intravoxel diffusion with larger numbers of diffusion-encoding directional measurements at higher diffusion-weighting factors (b values). However, the former technique results in longer acquisition times and the latter technique results in a lower signal-to-noise ratio (SNR). In this project, we developed specialized 7-T acquisition methods utilizing novel radiofrequency pulses, eight-channel parallel imaging EPI and high-order shimming with a phase-sensitive multichannel B0 field map reconstruction. These methods were applied in initial healthy adult volunteer studies, which demonstrated the feasibility of performing 7-T QBI. Preliminary comparisons of 3 T with 7 T within supratentorial crossing white matter tracts documented a 79.5% SNR increase for b=3000 s/mm2 (P=.0001) and a 38.6% SNR increase for b=6000 s/mm2 (P=.015). With spherical harmonic reconstruction of the q-ball orientation distribution function at b=3000 s/mm2, 7-T QBI allowed for accurate visualization of crossing fiber tracts with fewer diffusion-encoding acquisitions as compared with 3-T QBI. The improvement of 7-T QBI at b factors as high as 6000 s/mm2 resulted in better angular resolution as compared with 3-T QBI for depicting fibers crossing at shallow angles. Although the increased susceptibility effects at 7 T caused problematic distortions near brain-air interfaces at the skull base and posterior fossa, these initial 7-T QBI studies demonstrated excellent quality in much of the supratentorial brain, with significant improvements as compared with 3-T acquisitions in the same individuals.  相似文献   

6.
Diffusion-weighted magnetic resonance imaging provides access to fiber pathways and structural integrity in fibrous tissues such as white matter in the brain. In order to enable better access to the sensitivity of the diffusion indices to the underlying microstructure, it is important to develop artificial model systems that exhibit a well-known structure, on the one hand, but benefit from a reduced complexity on the other hand. In this work, we developed a novel multisection diffusion phantom made of polyethylene fibers tightly wound on an acrylic support. The phantom exhibits three regions with different geometrical configuration of fibers: a region with fibers crossing at right angles, a region with parallel fibers and homogeneous density, and, finally, a region with parallel fibers but with a gradient of fiber density along the axis of symmetry. This gives rise to a gradual change of the degree of anisotropy within the same phantom. In this way, the need to construct several phantoms with different fiber densities is avoided, and one can access different fractional anisotropies in the same experiment under the same physical conditions. The properties of the developed phantom are demonstrated by means of diffusion tensor imaging and diffusion kurtosis imaging. The measurements were performed using a diffusion-weighted spin-echo and a diffusion-weighted stimulated-echo pulse sequence programmed in-house. The influence of the fiber density packing on the diffusion parameters was analyzed. We also demonstrate how the novel phantom can be used for the validation of high angular resolution diffusion imaging data analysis.  相似文献   

7.
Diffusion tensor imaging (DTI)-based fiber tractography holds great promise in delineating neuronal fiber tracts and, hence, providing connectivity maps of the neural networks in the human brain. An array of image-processing techniques has to be developed to turn DTI tractography into a practically useful tool. To this end, we have developed a suite of image-processing tools for fiber tractography with improved reliability. This article summarizes the main technical developments we have made to date, which include anisotropic smoothing, anisotropic interpolation, Bayesian fiber tracking and automatic fiber bundling. A primary focus of these techniques is the robustness to noise and partial volume averaging, the two major hurdles to reliable fiber tractography. Performance of these techniques has been comprehensively examined with simulated and in vivo DTI data, demonstrating improvements in the robustness and reliability of DTI tractography.  相似文献   

8.
张美  张显鹏  李奎念  盛亮  袁媛  宋朝晖  李阳 《物理学报》2015,64(4):42801-042801
中子散射成像技术是近年来国外正在发展的一项新型辐射成像技术, 在深空宇宙探测、核材料监控等方面具有广阔的应用前景. 角分辨是衡量该技术成像能力的一项重要参数. 研究了位置不确定度和能量分辨对角分辨的影响. 理论分析表明: 以不同角度散射, 成像的角分辨不同; 位置不确定不仅直接影响角分辨, 还通过影响能量不确定度对角分辨间接贡献; 位置分辨主要来源于探测器的结构尺寸, 当探测器尺寸小于5 cm, 影响角分辨的主要来源是能量不确定度. 利用所获得的理论结果指导设计了原理探测系统, 并对设计的原理系统开展了初步实验研究. 结果表明, 分析结果与实验得到的角分辨参数基本一致.  相似文献   

9.
This work describes a segmented radial turbo-spin-echo technique (DW-rTSE) for high-resolution multislice diffusion-weighted imaging and quantitative ADC mapping. Diffusion-weighted images with an in-plane resolution of 700 microm and almost free of bulk motion can be obtained in vivo without cardiac gating. However, eddy currents and pulsatile brain motion cause severe artifacts when strong diffusion weighting is applied. This work explains in detail the artifacts in projection reconstruction (PR) imaging arising from eddy currents and describes an effective eddy current compensation based on the adjustment of gradient timing. Application of the diffusion gradients in all three orthogonal directions is possible without degradation of the images due to eddy current artifacts, allowing studies of the diffusional anisotropy. Finally, a self-navigation approach is proposed to reduce residual nonrigid body motion artifacts. Five healthy volunteers were examined to show the feasibility of this method.  相似文献   

10.
高嵩  朱艳春  李硕  包尚联 《物理学报》2014,63(4):48704-048704
为了准确得到人体内水分子各向异性扩散信息,在核磁共振扩散张量成像及高角分辨率扩散成像实验中,需要在众多空间均匀分布的方向上依次施加扩散敏感梯度磁场,测量水分子在不同方向上的扩散系数.目前方向分布方案的缺点有方向数目不连续、均匀性有待提高及部分方向数据的损坏会影响整个数据集等.本文以广义Fibonacci数列为基础,提出新的可以产生连续方向数目的扩散敏感梯度磁场方向分布方案,整个方案的方向均匀性较好,数据集内的部分数据仍然具有很好的空间均匀性,而且本方案中相邻两个扩散敏感梯度磁场方向接近相反,可以减小快速变化的高强度梯度磁场产生的涡流对结果的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号