首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A procedure using an automated microwave flow digestion technique was developed and validated for the digestion of samples of certifiable color additives before mercury determination by cold vapor atomic absorption spectrometry. Recovery studies were performed by spiking most of the color additives subject to batch certification by the U.S. Food and Drug Administration with inorganic mercury (HgNO3) and with organic mercury (CH3HgCl). Successful recoveries of 72-113% Hg added at the 1 microg/g level were obtained. A method detection limit of 0.2 microg Hg/g was estimated from a Hg-spiked FD&C Yellow No. 6 sample. At the specification level of 1 ppm Hg (1 microg Hg/g), the 95% confidence interval was +/- 0.2 ppm (0.2 microg Hg/g).  相似文献   

2.
A reversed-phase liquid chromatographic method was developed to determine parts-per-million and higher levels of Sudan 1, 1-(phenylazo)-2-naphthalenol, in the disulfo monoazo color additive FD&C Yellow No. 6 and in a related monosulfo monoazo color additive, D&C Orange No. 4. Sudan I, the corresponding unsulfonated monoazo dye, is a known impurity in these color additives. The color additives are dissolved in water and methanol, and the filtered solutions are directly chromatographed, without extraction or concentration, by using gradient elution at 0.25 mL/min. Calibrations from peak areas at 485 nm were linear. At a 99% confidence level, the limits of determination were 0.008 microg Sudan I/mL (0.4 ppm) in FD&C Yellow No. 6 and 0.011 microg Sudan I/mL (0.00011%) in D&C Orange No. 4. The confidence intervals were 0.202 +/- 0.002 microg Sudan I/mL (10.1 +/- 0.1 ppm) near the specification level for Sudan I in FD&C Yellow No. 6 and 20.0 +/- 0.2 microg Sudan I/mL (0.200 +/- 0.002%) near the highest concentration of Sudan I found in D&C Orange No. 4. A survey was conducted to determine Sudan I in 28 samples of FD&C Yellow No. 6 from 17 international manufacturers over 3 years, and in a pharmacology-tested sample. These samples were found to contain undetected levels (16 samples), 0.5-9.7 ppm Sudan I (0.01-0.194 microg Sudan I/mL in analyzed solutions; 11 samples including the pharmacology sample), and > or =10 ppm Sudan I (> or = 0.2 microg Sudan I/mL; 2 samples). Analyses of 21 samples of D&C Orange No. 4 from 8 international manufacturers over 4 years found Sudan I at undetected levels (8 samples), 0.0005 to < 0.005% Sudan I (0.05 to < 0.5 microg Sudan I/mL in analyzed solutions; 3 samples, including a pharmacology batch), 0.005 to <0.05% Sudan I (0.5 to <5 microg Sudan I/mL; 9 samples), and 0.18% Sudan I (18 microg Sudan I/mL; 1 sample).  相似文献   

3.
A cold vapor atomic absorption spectrometric method was developed for the subnanogram-per-gram determination of total Hg in a wide variety of foods. Foods were weighed into 50 mL polypropylene centrifuge tubes and dried without charring at 55 degrees C in a circulating oven. Samples were then digested at 58 degrees C with HNO3, HCl, and H2O2. After matrix modification with solutions of 2% Mg(NO3)2, 0.01% Triton X-100, and Cu(II) at 10 microg/mL, samples were analyzed by using a CeTAC Technologies M-6000A dedicated Hg analyzer. Based on a 2 g sample weight, the detection limit of the method over 12 batches averaged 0.30 ng/g wet weight and ranged from 0.03 to 0.6 ng/g. Recoveries of Hg added to 17 different foods, analyzed in a routine manner, averaged 97%, and individual recoveries ranged from 77 to 107%. Accuracy was confirmed by analysis of 7 biological reference materials from the National Research Council of Canada and the National Institute of Standards and Technology. Stabilization of low concentrations of Hg in solutions containing no sample was required to prevent loss of Hg from blanks. In a comparison of NaCl, potassium dichromate, and Au(II), chloride was much more effective for stabilization than the other two, and HCl was used for subsequent stabilization.  相似文献   

4.
Low recovery rate and inconsistent measurements were found in the determination of mercury by method of cold vapor atomic absorption spectrophotometry using the hydride formation system (Hitachi HFS-2, Hitachi Ltd., Tokyo). To overcome this problem of insufficient reaction time we developed a simple T-joint device attaching to the commercial HFS-2 system for the determination of mercury in various biological tissues and sediment samples. The T-joint device was designed to combine sample and reductant injection which increased the reaction time of the sample allowing a complete formation of mercury vapor and speeding up the analysis process in comparison to the traditional cold vapor atomic absorption spectrometric method. Recoveries of mercury were in the range 95% - 100%. The corrected procedure gave precise and accurate readings with several certified reference materials: NIES No. 2 from the Japan Environment Agency; IAEA-356 from the International Atomic Energy Association, and DOLT-2, DORM-2, TORT-2, PACS-1 and MESS-2 from the National Research Council of Canada. Simple acid digestion methods were developed based on the sample Hg level and the nature of the sample. The sample detection limits were 0.0125 μg g−1 fresh weight and 0.0625 μg g−1 dry weight for biological samples, and as low as 0.0125 μg g−1 dry weight for sediment samples. These analytical protocols we established met the general requirements in environmental research and monitoring of mercury pollution.  相似文献   

5.
《Analytical letters》2012,45(6):899-908
Abstract

To determine mercury in geological materials, samples are digested with nitric acid and sodium dichromate in a closed teflon vessel. After bringing to a constant weight, the digest is mixed with air and a sodium chloride-hydroxylamine hydrochloride-sulfuric acid solution and then Hg(II) is reduced to Hg with stannous chloride in a continuous flow manifold. The mercury vapor is then separated and measured using cold vapor atomic absorption spectrophotometry (CV-AAS). For a 100 mg sample the limit of detection is 20 parts per billion (ppb) Hg in sample. To obtain a 1% absorption signal, the described method requires 0.21 ppb Hg solution (equal to 16 ppb in sample). Precision is acceptable at less than 1.2% RSD for a 10 ppb Hg aqueous standard. Accuracy is demonstrated by the results of the analysis of standard reference materials. Several elements do interfere but the effect is minimal because either the digestion procedure does not dissolve them (e.g., Au or Pt) or the; are normally of low abundance (e.g., Se or Te).  相似文献   

6.
Guo T  Baasner J 《Talanta》1993,40(12):1927-1936
A method for on-line treatment of whole blood in a microwave oven and determination of mercury by flow injection cold vapor atomic absorption spectrometry was developed. After dilution of the whole blood and addition of oxidant, all further treatment and measurement were performed automatically, on-line. Recoveries of five mercury compounds were complete. Good agreement between measured and recommended values of mercury in whole blood reference materials was obtained. Measured mercury values also agreed with results from other accepted methods. Sample throughput was about 45 measurements/hr. Detection limit (3s) in diluted sample was 0.1 μg/l corresponding to 1μg/l Hg in whole blood. The RSD value at 0.5 μg/l Hg in the diluted sample was 6–7% (11 measurements and 0.5 ml sample volume). Mercury concentrations between 1 and 150 μg/l in whole blood can be measured using this method. For three replicate measurements, 0.5 ml of whole blood is required.  相似文献   

7.
The preparations of digested samples of certifiable color additives by dry ashing and wet digestion for arsenic analysis by hydride generation atomic absorption spectrometry (AAS) were compared. The dry ashing technique was based on the preparation used in ASTM D4606-86 for determination of As and Se in coal. The acid digestion method used nitric and sulfuric acids heated by microwaves in sealed vessels. The digested color additives were analyzed for As by using hydride generated from sodium borohydride mixed with the acidified solution on a flow injection system leading to an atomic absorption spectrometer. Dry ashing was preferable to wet digestion because wet digestion yielded poor recoveries of added As. Dry ashing followed by hydride generation AAS gave determination limits of 0.5 ppm As in the color additives. At a specification level of 3 ppm As, the precision of the method using dry ashing was +/- 0.4 ppm (95% confidence interval).  相似文献   

8.
Methods have been developed for the preparation of samples containing organic matrices (natural high-color waters, soils, bottom sediments, aquatic organism tissue) to the determination of mercury and other toxic elements (As, Cd, Pb, Se) by different procedures of microwave digestion under elevated pressure (closed systems, vessels with partial removal of the gas phase). It is found that, under optimal oxidative and temperature-time conditions, the partial removal of the gas phase does not lead to losses of volatile elements if sample portions under 2 g are used. The duration of preparation of a series of samples does not exceed 40 min. The detection limits for mercury in the cold vapor atomic absorption spectrometry and for Cd, Pb, As, and Se by electrothermal atomic absorption spectrometry are 5 and 0.13, 6, 13, and 13 μg/kg, respectively. The accuracy of determination is confirmed by the results of analysis of certified reference materials of water and plant materials and also by the standard addition method. The selected conditions of preparation of sludge samples have ensured the determination of mercury by the cold vapor atomic absorption spectrometry in drinking, natural, and sewage waters with a detection limit of 0.07 μg/L.  相似文献   

9.
An electrochemical cold vapor generation system with polyaniline modified graphite electrode as cathode material was developed for Hg (II) determination by coupling with atomic fluorescence spectrometry. This electrochemical cold vapor generation system with polyaniline/graphite electrode exhibited higher sensitivity; excellent stability and lower memory effect compared with graphite electrode electrochemical cold vapor generation system. The relative standard deviation was 2.7% for eleven consecutive measurements of 2 ng mL− 1 Hg (II) standard solution and the mercury limit of detection for the sample blank solution was 1.3 рg mL− 1 (3σ). The accuracy of the method was evaluated through analysis of the reference materials GBW09101 (Human hair) and GBW 08517 (Laminaria Japonica Aresch) and the proposed method was successfully applied to the analysis of human hairs.  相似文献   

10.
用间接法测定硫化物的研究   总被引:3,自引:0,他引:3  
前人已经报道用汞的冷原子吸收法测定硫化物,利用Hg~(2+)和S~(2-)形成很稳定的化合物,使汞的吸光度值降低,根据其降低的程度来测定硫化物的含量。这种方法简便、灵敏,但对加入的Hg~(2+)量有较大的限制。S_2O_3~(2-)、CN~-、I~-等也有严重干扰,这些离子常与S~(2-)共存于水样中,所以,实际测定时,常需分离这些离子。  相似文献   

11.
A highly selective, sensitive and rapid method for the determination of trace amounts of inorganic mercury based on the reaction of Hg (II) with 6-mercaptopurine and the solid phase extraction of the complex on C18 membrane disks was developed. The 6-mercaptopurine selectively reacts with Hg (II) to form a complex in the pH range of 5-8. This complex was preconcentrated by solid phase extraction with C18 disks. An enrichment factor of 100 was achieved. The molar absorptivity of the complex is 0.26 x 10(-6) L. mol(-1) cm(-1) measured at 315 nm. The Beer's law is obeyed in the concentration range of 0.002-0.048 microg mL(-1). The relative standard deviation for eleven-replicated measurement of 0.04 microg mL(-1) is 1.5 %. The detection limit is 0.001 microg mL(-1) in the water samples. The advantage of the method is that the determination of Hg (II) is free from interference of almost all the cations and anions found in environment and wastewater samples. The determination of Hg (II) in water samples of different origins and marine sediment were carried out by the present method and cold vapor atomic absorption spectrometry (CVAAS). Also the method's accuracy was investigated by using SRM 2709. The obtained results by the present procedure were in good agreement with those of the CVAAS and certified value, so that the applicability of the proposed method was confirmed for the real samples.  相似文献   

12.
A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.  相似文献   

13.
A sequential injection (SI) method for the determination of mercury via cold vapor atomic absorption spectrophotometry is presented. The method differs from flow injection (FI) cold vapor methods for the determination of mercury because of the simplicity of the system required for the method: one pump, one valve, a gas-liquid separator, and an atomic absorption spectrophotometer equipped with a quartz cell. Under optimal conditions, the method has the following figures of merit: a linear calibration range of 1.0 to 20 microg L(-1); a detection limit of 0.46 microg L(-1); and a precision of 0.90% RSD (8 microg L(-1)). The procedure allows for a sampling rate of one injection per 80 s (excluding sample pretreatment). Results from the determination of mercury in water and fish specimens are also presented. The figures of merit of the method are compared to two other SI methods for the determination of mercury.  相似文献   

14.
A simple, fast, and sensitive method for speciation and determination of As (III, V) and Hg (II, R) in human blood samples based on ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) and flow injection hydride generation/cold vapor atomic absorption spectrometry (FI-HG/CV-AAS) has been developed. Tetraethylthiuram disulfide, mixed ionic liquids (hydrophobic and hydrophilic ILs) and acetone were used in the DLLME step as the chelating agent, extraction and dispersive solvents, respectively. Using a microwave assisted-UV system, organic mercury (R-Hg) was converted to Hg(II) and total mercury amount was measured in blood samples by the presented method. Total arsenic content was determined by reducing As(V) to As(III) with potassium iodide and ascorbic acid in a hydrochloric acid solution. Finally, As(V) and R-Hg were determined by mathematically subtracting the As(III) and Hg(II) content from the total arsenic and mercury, respectively. Under optimum conditions, linear range and detection limit (3σ) of 0.1–5.0 µg L?1 and 0.02 µg L?1 for As(III) and 0.15–8.50 µg L?1 and 0.03 µg L?1 for Hg(II) were achieved, respectively, at low RSD values of < 4% (N = 10). The developed method was successfully applied to determine the ultra-trace amounts of arsenic and mercury species in blood samples; the validation of the method was performed using standard reference materials.  相似文献   

15.
A method was developed for the generation of a "cold vapor" of cadmium by means of flow injection-chemical vapor generation from aqueous samples, the determination being conducted with an atomic absorption spectrometer (Pyrex glass T-cell). Several gas-liquid separator designs, atomizer designs, and the effect of several reagents previously reported as sensitivity enhancers (including cobalt, nickel, thiourea and didodecyl-dimethylammonium bromide) were investigated. The limit of detection, calculated as the concentration giving a signal equal to three times the standard deviation of the blank, was 16 ng L(-1), and the relative standard deviation was 1.4% for a concentration of 2 microg L(-1) and 3.8% for 0.1 microg L(-1). The addition of nickel and thiourea to the samples provided improved tolerance to the interference of coexisting ions. Two NIST certified reference materials, Montana Soil and Apple Leaves (respectively containing 41.7+/-0.25 mg kg(-1) Cd and 0.013+/-0.002 mg kg(-1) Cd) were accurately analyzed. The interference of lead was overcome by coprecipitation with barium sulfate, and the experimental values obtained were 41+/-1 mg kg(-1) Cd and 0.013+/-0.002 mg kg(-1) Cd, respectively.  相似文献   

16.
An on-line inorganic and organomercury species separation, preconcentration and determination system consisting of cold vapor atomic absorption spectrometry (CV-AAS or CV-ETAAS) coupled to a flow injection (FI) method was studied. The inorganic mercury species was retained on a column (i.d., 3 mm; length 3 cm) packed to a height of 0.7 cm with a chelating resin aminopropyl-controlled pore glass (550 A) functionalized with [1,5-bis (2 pyridyl)-3-sulphophenyl methylene thiocarbonohydrazyde] placed in the injection valve of a simple flow manifold. Methylmercury is not directly determined. Previous oxidation of the organomercurial species permitted the determination of total mercury. The separation of mercury species was obtained by the selective retention of inorganic mercury on the chelating resin. The difference between total and inorganic mercury determined the organomercury content in the sample. The inorganic mercury was removed on-line from the microcolumn with 6% (m/v) thiourea. The mercury cold vapor generation was performed on-line with 0.2% (m/v) sodium tethrahydroborate and 0.05% (m/v) sodium hydroxide as reducing solution. The determination was performed using CV-AAS and CV-ETAAS, both approaches have been used and compared for the speciation of mercury in sea food. A detection limit of 10 and 6 ng l(-1) was achieved for CV-AAS and CV-ETAAS, respectively. The precision for 10 replicate determinations at the 1 microg l(-1) Hg level was 3.5% relative standard deviation (R.S.D.), calculated from the peak heights obtained. Both approaches were validated with the use of two certified reference materials and by spiking experiments. By analyzing the two biological certified materials, it was evident that the difference between the total mercury and inorganic mercury corresponds to methylmercury. The concentrations obtained by both techniques were in agreement with the certified values or with differences of the certified values for total Hg(2+) and CH(3)Hg(+), according to the t-test for a 95% confidence level. It is amazing how this very simple method is able to provide very important information on mercury speciation.  相似文献   

17.
A reversible solid optical sensor (SGIR) for Hg(2+) based on silica gel was designed and synthesized. The binding and adsorption abilities of SGIR for metal cations were investigated with fluorophotometry and cold vapor atomic absorption spectrometry, respectively. The SGIR exhibits high selectivity for sensing Hg(2+) over other metal cations in aqueous media because the Hg(2+) ion selectively induces a ring opening of the rhodamine fluorophores, and the SGIR was also found to adsorb 72% of Hg(2+) ion. The determination of Hg(2+) in both tap and lake water samples displays satisfactory results, and the SGIR can also be easily recovered by treatment of a solution of TBA(+)OH(-).  相似文献   

18.
电解冷蒸气发生原子荧光法测定痕量汞   总被引:1,自引:0,他引:1  
以电解冷蒸气发生技术结合原子荧光光谱仪,采用自行设计的圆盘电解池,进行汞的电解还原冷蒸气发生情况的研究.实验表明,铂作为阴极时,Hg的电化学发生响应信号与化学还原法获得的信号强度相当;同时发现,载气引入位置是影响Hg响应信号强度的重要因素.在1.0 mol/L H2SO4作为阴极液及0.8 A的电解电流条件下,Hg的检出限为1.2 ng/L(3σ); 相对标准偏差为1.7%(n=11).利用此体系分析了标准物质及生物样品中的痕量汞,结果满意.  相似文献   

19.
Hou X  Ai X  Jiang X  Deng P  Zheng C  Lv Y 《The Analyst》2012,137(3):686-690
A new, miniaturized and low power consumption photochemical vapor generation (PVG) technique utilizing an ultraviolet light-emitting diode (UV-LED) lamp is described, and further validated via the determination of trace mercury. In the presence of formic acid, the mercury cold vapor is favourably generated from Hg(2+) solutions by UV-LED irradiation, and then rapidly transported to an atomic fluorescence spectrometer for detection. Optimum conditions for PVG and interferences from concomitant elements were investigated in detail. Under optimum conditions, a limit of detection (LOD) of 0.01 μg L(-1) was obtained, and the precision was better than 3.2% (n = 11, RSD) at 1 μg L(-1) Hg(2+). No obvious interferences from any common ions were evident. The methodology was successfully applied to the determination of mercury in National Research Council Canada DORM-3 fish muscle tissue and several water samples.  相似文献   

20.
A rugged and reliable method for the determination of mercury in coal without sample digestion, based on chemical vapor generation (cold vapor technique) from slurried coal samples has been developed. It involves collection of the mercury vapor in a graphite tube, treated with gold or rhodium as permanent modifier, and determination by electrothermal atomic absorption spectrometry. Mercury quantitatively leached out of the investigated coal reference materials into 1 mol l−1 nitric acid within 48 h when the coal was ground to a particle size of ≤50 μm, except for one sample (BCR 180), which had to be ground to ≤30 μm, or a leaching time of 72 h had to be used. No detectable quantity of mercury was generated directly from the slurry particles, but it was not necessary to filter the solution. The greatest advantage of the method is that only a minimum of reagents and sample handling steps are required, a prerequisite for accurate results in routine analysis. The results were well within the 95% confidence level of the certificate or close to the information value of the reference materials investigated. The characteristic mass of 110 pg obtained with gold as the permanent modifier is close to values reported for direct analysis of solutions, showing close to 100% trapping efficiency for mercury. A limit of detection (LOD) of 90 pg absolute was obtained with this modifier, which corresponds to an LOD of 0.009 μg g−1 Hg in coal. This is based on 1 ml of slurry containing 10 mg of coal, and is an order of magnitude lower than the lowest mercury content in the investigated reference materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号