首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
We consider CMV matrices, both standard and extended, with analytic quasi-periodic Verblunsky coefficients and prove Anderson localization in the regime of positive Lyapunov exponents. This establishes the CMV analog of a result Bourgain and Goldstein proved for discrete one-dimensional Schrödinger operators. We also prove a similar result for quantum walks on the integer lattice with suitable analytic quasi-periodic coins.  相似文献   

2.
We establish an analog of the Cauchy-Poincare interlacing theorem for normal matrices in terms of majorization, and we provide a solution to the corresponding inverse spectral problem. Using this solution we generalize and extend the Gauss-Lucas theorem and prove the old conjecture of de Bruijn-Springer on the location of the roots of a complex polynomial and its derivative and an analog of Rolle's theorem, conjectured by Schoenberg.

  相似文献   


3.
An inverse spectral problem is studied for a non-selfadjoint Sturm-Liouville operator on a finite interval with an arbitrary behavior of the spectrum. The spectral data introduced generalize the classical discrete spectral data corresponding to the specification of the spectral function in the selfadjoint case. The connection with other types of spectral characteristics is investigated and a uniqueness theorem is proved. A constructive procedure for solving the inverse problem is given.  相似文献   

4.
In this paper, we consider the Sturm–Liouville equation with the jump conditions inside the interval (0,π). The inverse problem is studied, which consists in recovering operator coefficients from two spectra, corresponding to different boundary conditions. We prove the uniqueness theorem and provide necessary and sufficient conditions for solvability of the inverse problem. We also obtain the oscillation theorem for the eigenfunctions of the considered discontinuous boundary value problem.  相似文献   

5.
The object of this paper is threefold. First, we investigate in a Hilbert space setting the utility of approximate source conditions in the method of Tikhonov–Phillips regularization for linear ill‐posed operator equations. We introduce distance functions measuring the violation of canonical source conditions and derive convergence rates for regularized solutions based on those functions. Moreover, such distance functions are verified for simple multiplication operators in L2(0, 1). The second aim of this paper is to emphasize that multiplication operators play some interesting role in inverse problem theory. In this context, we give examples of non‐linear inverse problems in natural sciences and stochastic finance that can be written as non‐linear operator equations in L2(0, 1), for which the forward operator is a composition of a linear integration operator and a non‐linear superposition operator. The Fréchet derivative of such a forward operator is a composition of a compact integration and a non‐compact multiplication operator. If the multiplier function defining the multiplication operator has zeros, then for the linearization an additional ill‐posedness factor arises. By considering the structure of canonical source conditions for the linearized problem it could be expected that different decay rates of multiplier functions near a zero, for example the decay as a power or as an exponential function, would lead to completely different ill‐posedness situations. As third we apply the results on approximate source conditions to such composite linear problems in L2(0, 1) and indicate that only integrals of multiplier functions and not the specific character of the decay of multiplier functions in a neighbourhood of a zero determine the convergence behaviour of regularized solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号