首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
(19)F homonuclear dipolar recoupling methods were used to measure internuclear distances ranging from 5 to 12 A in fluorinated organic compounds in the solid state. Magic-angle-spinning-based high-resolution techniques were utilized. Trifluoromethyl and aromatic fluorine groups were separated by rigid aromatic spacers; these compounds were diluted into nonfluorinated host molecule matrices to give isolated homonuclear spin pairs with known internuclear distances. Radiofrequency-driven recoupling (RFDR) was used to elicit magnetization exchange between the spin pairs in 1D and 2D experiments. Simulation of the exchange was accomplished using a Monte Carlo-type algorithm to search the parameter space. These methods allow the determination of distances with an accuracy of 1 A at shorter distances and 2 A at longer distances, with the assumption of no prior knowledge of T(2)(ZQ).  相似文献   

2.
We examine the influence of continuous-wave heteronuclear decoupling on symmetry-based double-quantum homonuclear dipolar recoupling, using experimental measurements, numerical simulations, and average Hamiltonian theory. There are two distinct regimes in which the heteronuclear interference effects are minimized. The first regime utilizes a moderate homonuclear recoupling field and a strong heteronuclear decoupling field; the second regime utilizes a strong homonuclear recoupling field and a weak or absent heteronuclear decoupling field. The second regime is experimentally accessible at moderate or high magic-angle-spinning frequencies and is particularly relevant for many realistic applications of solid-state NMR recoupling experiments to organic or biological materials.  相似文献   

3.
Dipolar recoupling in solid state NMR by phase alternating pulse sequences   总被引:2,自引:2,他引:0  
We describe some new developments in the methodology of making heteronuclear and homonuclear recoupling experiments in solid state NMR insensitive to rf-inhomogeneity by phase alternating the irradiation on the spin system every rotor period. By incorporating delays of half rotor periods in the pulse sequences, these phase alternating experiments can be made γ encoded. The proposed methodology is conceptually different from the standard methods of making recoupling experiments robust by the use of ramps and adiabatic pulses in the recoupling periods. We show how the concept of phase alternation can be incorporated in the design of homonuclear recoupling experiments that are both insensitive to chemical shift dispersion and rf-inhomogeneity.  相似文献   

4.
Dipolar recoupling techniques of homonuclear spin pairs are commonly used for distance or orientation measurements in solids. Accurate measurements are interfered with by broadening mechanisms. In this publication narrowband RF-driven dipolar recoupling magnetization exchange experiments are performed as a function of the spinning frequency to reduce the effect of zero-quantum T(2) relaxation. To enhance the exchange of magnetization between the coupled spins, a fixed number of rotor-synchronous pi-pulses are applied at spinning frequencies approaching the rotational resonance (R(2)) conditions. The analysis of the powder averaged dipolar decay curves of the spin magnetizations as a function of the spinning frequency provides a quantitative measure of the dipolar coupling. An effective Hamiltonian for this experiment is derived, taking into account all chemical shift parameters of the spins. The length of the nbRFDR mixing time and the number of rotor cycles per pi-pulse are optimized by numerical simulations for sensitive probing of the dipolar coupling strength. The zero-quantum T(2) relaxation time can easily be taken into account in the data analysis, because the overall exchange time is almost constant in these experiments. Spinning-frequency-dependent nbRFDR experiments near the m = 1 and m = 2 R(2) condition are shown for doubly (13)C-labeled hydroxybutyric acid. Copyright 2000 Academic Press.  相似文献   

5.
Numerical simulations and experiments were used to examine the possibility of employing strong spin-lock fields for recoupling of homonuclear dipolar interactions between spin-3/2 quadrupolar nuclei and to compare it to the rotary-resonance recoupling at weak spin-lock fields. It was shown that strong spin-lock pulses under MAS conditions can lead to recoupling, provided that the electric-field gradient principal axes systems of the coupled nuclei are aligned and that their quadrupolar coupling constants are approximately the same. The phenomenon is based on the fact that strong spin-lock pulses induce adiabatic transfer of magnetization between the central-transition coherence and the triple-quantum coherence with equal periodicity as is the periodicity of the time-dependent dipolar coupling. Because of the synchronous variation of the state of the spin system and of the dipolar interaction, the effect of the latter on the central-transition coherence and on the triple-quantum coherence is not averaged out by sample rotation. The approach is, however, very sensitive to the relative orientation of the electric-field gradient principal axes systems and therefore less robust than the approach based on weak spin-lock pulses that satisfy rotary-resonance condition.  相似文献   

6.
Recent multiple-quantum MAS NMR experiments have shown that a change in the rotor phase (and, hence, in the Hamiltonian) between the excitation and reconversion periods can lead to informative spinning-sideband patterns. However, such "rotor encoding" is not limited to multiple-quantum experiments. Here it is shown that longitudinal magnetization can also be rotor-encoded. Both homonuclear and heteronuclear rotor encoding of longitudinal magnetization (RELM) experiments are performed on dipolar-coupled spin-1/2 systems, and the corresponding sideband patterns in the indirect dimension are analyzed. In both cases, only even-order sidebands are produced, and their intensity distribution depends on the durations of the recoupling periods. In heteronuclear experiments using REDOR-type recoupling, purely dipolar sideband patterns that are entirely free of effects due to the chemical-shielding anisotropy can be generated. Advantages and disadvantages of the heteronuclear RELM experiment are discussed in the context of other methods used to measure heteronuclear dipolar couplings.  相似文献   

7.
A method for selectively suppressing the signals of OH and NH protons in (1)H combined rotation and multiple-pulse spectroscopy (CRAMPS) and in (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra is presented. It permits distinction of overlapping CH and OH/NH proton signals, based on the selective dephasing of the magnetization of OH and NH protons by their relatively large (1)H chemical-shift anisotropies. For NH protons, the (14)N-(1)H dipolar coupling also contributes significantly to this dephasing. The dephasing is achieved by a new combination of heteronuclear recoupling of these anisotropies with (1)H homonuclear dipolar decoupling. Since the 180 degrees pulses traditionally used for heteronuclear dipolar and chemical-shift anisotropy recoupling would result in undesirable homonuclear dephasing of proton magnetization, instead the necessary inversion of the chemical-shift Hamiltonian every half rotation period is achieved by inverting the phases of all the pulses in the HW8 multiple-pulse sequence. In the HETCOR experiments, carefully timed (13)C 180 degrees pulses remove the strong dipolar coupling to the nearby (13)C spin. The suppression of NH and OH peaks is demonstrated on crystalline model compounds. The technique in combination with HETCOR NMR is applied to identify the CONH and NH-CH groups in chitin and to distinguish NH and aromatic proton peaks in a peat humin.  相似文献   

8.
This paper centers on a theoretical study of amplitude-modulated heteronuclear decoupling in solid-state NMR under magic-angle spinning (MAS). A spin system with a single isolated rare spin coupled to a large number of abundant spins is used in the analysis. The phase-alternating decoupling scheme (XiX decoupling) is analyzed using bimodal Floquet theory and the operator-based perturbation method developed by van Vleck. An effective Hamiltonian correct to second order is calculated for the spin system under XiX decoupling. The results of these calculations indicate that under XiX decoupling the main contribution to the residual line width comes from a cross-term between the heteronuclear and the homonuclear dipolar couplings. This is in contrast to continuous-wave decoupling, where the residual line width is dominated by the cross-term between the heteronuclear dipolar coupling and the chemical-shielding tensor of the irradiated spin. For high-power decoupling the method results in very good decoupling provided that certain unfavorable recoupling conditions, imposed by specific ratios of the amplitude modulation frequency and the MAS frequency, are avoided. For low-power decoupling, the method leads to acceptable decoupling when the pulse length corresponds to an integer multiple of a 2pi rotation and the rf-field amplitude is less than a quarter of the MAS frequency. The performance of the XiX scheme is analyzed over a range of values of the rf power, and numerical results that agree well with the most recent experimental observations are presented.  相似文献   

9.
A new two-dimensional heteronuclear multiple-quantum magic-angle spinning (MQ MAS) experiment is presented which combines high resolution for the half-integer quadrupolar nucleus with information about the dipolar coupling between the quadrupolar nucleus and a spin I=1/2 nucleus. Homonuclear MQ coherence is initially created for the half-integer quadrupolar nucleus by a single pulse as in a standard MQ MAS experiment. REDOR recoupling of the heteronuclear dipolar coupling then allows the creation of a heteronuclear multiple-quantum coherence comprising multiple- and single-quantum coherence of the quadrupolar and spin I=1/2 nucleus, respectively, which evolves during t1. Provided that the t1 increment is not rotor synchronized, rotor-encoded spinning-sideband patterns are observed in the indirect dimension. Simulated spectra for an isolated IS spin pair show that these patterns depend on the recoupling time, the magnitude of the dipolar coupling, the quadrupolar parameters, as well as the relative orientation of the quadrupolar and dipolar principal axes systems. Spectra are presented for Na2HPO4, with the heteronuclear 23Na-1HMQ MAS experiments beginning with the excitation of 23Na (spin I=3/2) three-quantum coherence. Coherence counting experiments demonstrate that four- and two-quantum coherences evolve during t1. The heteronuclear spinning-sideband patterns observed for the three-spin H-Na-H system associated with the Na(2) site are analyzed. For an IS2 system, simulated spectra show that, considering the free parameters, the spinning-sideband patterns are particularly sensitive to only, first, the angle between the two IS internuclear vectors and, second, the two heteronuclear dipolar couplings. It is demonstrated that the proton localization around the Na(2) site according to the literature crystal structure of Na2HPO4 is erroneous. Instead, the experimental data is consistent with two alternative different structural arrangements, whereby either there is a deviation of 10 degrees from linearity for the case of two identical Na-H distances, or there is a linear arrangement, but the two Na-H distances are different. Furthermore, the question of the origin of spinning-sidebands in the (homonuclear) MQ MAS experiment is revisited. It is shown that the asymmetric experimental MQ sideband pattern observed for the low-C(Q) Na(2) site in Na(2)HPO4 can only be explained by considering the 23Na chemical shift anisotropy.  相似文献   

10.
Using average Hamiltonian (AH) theory, we analyze recently introduced homonuclear dipolar recoupling pulse sequences for exciting central-transition double-quantum coherences (2QC) between half-integer spin quadrupolar nuclei undergoing magic-angle-spinning. Several previously observed differences among the recoupling schemes concerning their compensation to resonance offsets and radio-frequency (rf) inhomogeneity may qualitatively be rationalized by an AH analysis up to third perturbation order, despite its omission of first-order quadrupolar interactions. General aspects of the engineering of 2Q-recoupling pulse sequences applicable to half-integer spins are discussed, emphasizing the improvements offered from a diversity of supercycles providing enhanced suppression of undesirable AH cross-terms between resonance offsets and rf amplitude errors.  相似文献   

11.
The main purpose of homonuclear Hartmann-Hahn or TOCSY experiments is the assignment of spin systems based on efficient coherence transfer via scalar couplings. In partially aligned samples, however, magnetization is also transferred via residual dipolar couplings (RDCs) and therefore through space correlations can be observed in COSY and TOCSY experiments that make the unambiguous assignment of covalently bound spins impossible. In this article, we show that the JESTER-1 multiple pulse sequence, originally designed for broadband heteronuclear isotropic Hartmann-Hahn transfer, efficiently suppresses the homonuclear dipolar coupling Hamiltonian. This suppression can be enhanced even further by variation of the supercycling scheme. The application of the resulting element in homonuclear TOCSY periods results in coherence transfer via J-couplings only. As a consequence, the assignment of scalar coupled spin systems is also possible in partially aligned samples. The bandwidth of coherence transfer for the JESTER-1-derived sequences is comparable to existing TOCSY multiple pulse sequences. Results are demonstrated in theory and experiment.  相似文献   

12.
The paper describes two-dimensional solid state NMR experiments that use powdered dephased antiphase coherence (γ preparation) to encode chemical shifts in the indirect dimension. Both components of this chemical shift encoded gamma-prepared states can be refocused into inphase coherence by a recoupling element. This helps to achieve sensitivity enhancement in 2D NMR experiments by quadrature detection. The powder dependence of the gamma-prepared states allows for manipulating them by suitable insertion of delays in the recoupling periods. This helps to design experiments that suppress diagonal peaks in 2D spectra, leading to improved resolution. We describe some new phase modulated heteronuclear and homonuclear recoupling pulse sequences that simplify the implementation of the described experiments based on γ prepared states. Recoupling in the heteronuclear spin system is achieved by matching the difference in the amplitude of the sine/cosine modulated phase on the two rf-channels to the spinning frequency while maintaining the same power on the two rf-channels.  相似文献   

13.
A High-resolution two-dimensional (2D) (1)H double-quantum (DQ) homonuclear recoupling experiments, combined with smooth amplitude-modulation (SAM) homonuclear decoupling is presented. The experiment affords highly resolved and clean (1)H DQ-SQ 2D spectra at very-fast MAS rates (nu(R)=35 kHz). The method is well suited to probe (1)H-(1)H distances in powdered solids and demonstrations are applied on a NaH(2)PO(4) powdered sample, an inorganic compound having hydrogen bonding networks.  相似文献   

14.
Stereo-selectivedeuteration has been explored as an approach for improving the accuracy of NMR-derived, three-bond vicinal proton-proton coupling constants in the 12-base-pair DNA Dickerson sequence [d(CGCGAATTCGCG)(2)]. The coupling constants are useful for DNA structure determination in restrained molecular dynamics calculations. Specifically, the A5 and A6 residues were prepared with the H2" proton stereo-selectively replaced with a deuteron. Deuteration of the H2" leads to a 42-fold reduction in the transverse cross-relaxation rate of the H2' spin, effectively negating the contribution of transverse cross relaxation to the cross peak frequencies and phases. Calculated linewidth and polarization transfer functions indicated that the reduced dipolar interaction is also expected to result in a significant increase in intensity for all cross peaks involving the H1', H2', or H3' spin. The spectral complexity is also reduced by selective deuteration. Time-shared homonuclear decoupling of passive spins during acquisition was implemented, reducing the spin system, in some cases, to an effectively isolated two-spin system. This enables the use of a 90 degrees mixing pulse instead of the 35 degrees pulse commonly used in standard P.E.COSY experiments, leading to an additional 75% increase in signal intensity. Selective excitation pulses were used to reduce the number of increments required in the indirect dimension by as much as a factor of 4. The cumulative improvement in sensitivity is striking, approaching three orders of magnitude per unit time. Separate experiments, referred to as Stripe-COSY and Superstripe-COSY, were optimized for each coupling constant measured. Finally, J-doubling was used to obtain the most accurate peak separations. This comprehensive approach shows promise as an effective method for extracting highly accurate homonuclear vicinal coupling constants in DNA.  相似文献   

15.
We analyze the multiple-quantum dynamics governed by a new homonuclear recoupling strategy effecting an average dipolar Hamiltonian comprising three-spin triple-quantum operators (e.g., S(p)+S(q)+S(r)+) under magic-angle spinning conditions. Analytical expressions are presented for polarization transfer processes in systems of three and four coupled spins-1/2 subject to triple-quantum filtration (3QF), and high-order multiple-quantum excitation is investigated numerically in moderately large clusters, comprising up to seven spins. This recoupling approach gives highly efficient excitation of triple-quantum coherences: ideally, up to 67% of the initial polarization may be recovered by 3QF in three-spin systems in polycrystalline powders. Two homonuclear 2D correlation strategies are demonstrated experimentally on powders of uniformly 13C-labeled alanine and tyrosine: the first correlates the single-quantum spectrum in the first dimension with the corresponding 3QF spectrum along the other. The second protocol correlates triple-quantum coherences with their corresponding single-quantum coherences within triplets of coupled spins.  相似文献   

16.
It is shown how homonuclear distances and homonuclear dipolar lattice sums between spin-1/2 nuclei can be measured by a pulsed solid-state NMR experiment under magic-angle spinning conditions. The presented technique is based on double-quantum coherence filtering. Instead of measuring a build-up of double-quantum coherence the pulse sequence is designed to dephase double-quantum coherence. This is achieved by exciting double-quantum coherence either with the help of the through-space dipolar coupling or the through-bond dipolar coupling while the dephasing relies on the through-space dipolar coupling as selected by a gamma-encoded pulse sequence from the C/R symmetry class. Since dephasing curves can be normalized on zero dephasing, it is possible to analyze the initial dephasing regime and hence determine dipolar lattice sums (effective dipolar couplings) in multiple-spin systems. A formula for the effective dipolar coupling is derived theoretically and validated by numerical calculations and experiments on crystalline model compounds for (13)C and (31)P spin systems. The double-quantum dephasing experiment can be combined with constant-time data sampling to compensate for relaxation effects, consequently only two experimental data points are necessary for a single distance measurement. The phase cycling overhead for the constant-time experiment is minimal because a short cogwheel phase cycle exists. A 2D implementation is demonstrated on [(13)C(3)]alanine.  相似文献   

17.
We establish a connection between ground states of local quantum Hamiltonians and thermal states of classical spin systems. For any discrete classical statistical mechanical model in any spatial dimension, we find an associated quantum state such that the reduced density operator behaves as the thermal state of the classical system. We show that all these quantum states are unique ground states of a universal 5-body local quantum Hamiltonian acting on a (polynomially enlarged) qubit system on a 2D lattice. The only free parameters of the quantum Hamiltonian are coupling strengths of two-body interactions, which allow one to choose the type and dimension of the classical model as well as the interaction strength and temperature. This opens the possibility to study and simulate classical spin models in arbitrary dimension using a 2D quantum system.  相似文献   

18.
The limits of polarization transfer efficiency are explored for systems consisting of three isotropically coupled spins 1/2 in the absence of relaxation. An idealized free evolution and control Hamiltonian is studied, which provides an upper limit of transfer efficiency (in terms of transfer amplitude and transfer time) for realistic homonuclear spin systems with arbitrary Heisenberg-type coupling constants J12, J13, and J23. It is shown that optimal control based pulse sequences have significantly improved transfer efficiencies compared to conventional transfer schemes. An experimental demonstration of optimal polarization transfer is given for the case of the carbon spin system of fully 13C labelled alanine at 62.5 MHz Larmor frequency.  相似文献   

19.
A new magic-angle spinning NMR method for distance determination between unlike spins, where one of the two spins in question is not irradiated at all, is introduced. Relaxation-induced dipolar exchange with recoupling (RIDER) experiments can be performed with conventional double-resonance equipment and utilize the familiar π-pulse trains to recouple the heteronuclear dipolar interaction under magic-angle spinning conditions. Longitudinal relaxation of the passive spin during a delay between two recoupling periods results in a dephasing of the heteronuclear coherence and consequently a dephasing of the magnetization detected after the second recoupling period. The information about the dipolar coupling is obtained by recording normalized dephasing curves in a fashion similar to the REDOR experiment. At intermediate mixing times, the dephasing curves also depend on the relaxation properties of the passive spin, i.e., on single- and double-quantum longitudinal relaxation times for the case of I = 1 nuclei, and these relaxation times can be estimated with this new method. To a good approximation, the experiment does not depend on possible quadrupolar interactions of the passive spin, which makes RIDER an attractive method when distances to quadrupolar nuclei are to be determined. The new method is demonstrated experimentally with 14N and 2H as heteronuclei and observation of 13C in natural abundance.  相似文献   

20.
By exploiting the homology in the form of the truncated high-field homonuclear dipole–dipole and quadrupole coupling Hamiltonians, we have previously demonstrated that a simple adaptation of a rotor-synchronized pulse sequence (DRAMA) used for the recovery of dipole–dipole couplings can also be used to resurrect quadrupole couplings (QUADRAMA). In the canonical implementation of these recovery pulse sequences, the couplings are not significantly scaled down from their static sample values. While such minimal scaling is of course desirable in the recovery of typical homonuclear dipolar couplings ( ≤ 2 kHz) and small quadrupole couplings, it is clearly not ideal for the recovery of the much larger quadrupole couplings (20–200 kHz) often encountered in solid-state 2H NMR. In such a case, some prior knowledge of the order of magnitude of the coupling is required to optimize the experimental conditions for QUADRAMA. In order to overcome this drawback, in this study, we have developed a general and optimized strategy for implementing the QUADRAMA technique which does not require any knowledge of the size of the coupling νQ. Experimental tests of the optimized protocol demonstrate that by judicious choices of a combination of scaling factors and recoupling times, 2H quadrupole couplings ranging over an order of magnitude from 3 to 42 kHz can be measured. Since this optimized protocol can reliably be used to recover couplings over a broad range, it expands the range of systems accessible to study by 2H NMR into a realm where static sample NMR and simple MAS NMR may fail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号